Name: \qquad
Find the polynomial P of degree ≤ 3 that interpolates the data $(1,1),(2,1),(3,2),(0,-1)$. What is the value of $P(1.5)$?

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)=(1,1) \\
\left(x_{2}, y_{2}\right)=(2,1) \\
\left(x_{3}, y_{3}\right)=(3,2) \\
\left(x_{4}, y_{4}\right)=(0,-1) \\
L_{1}(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{6}\right)\left(x_{1}-x_{4}\right)}=\frac{(x-2)(x-3)(x-0)}{(1-2)(1-3)(1-0)}=\frac{1}{2} x(x-2)(x-3) . \\
L_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)}=\frac{(x-1)(x-3)(x-0)}{(2-1)(2-3)(2-0)}=-\frac{1}{2} x(x-1)(x-3) . \\
L_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{1}\right)\left(x x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)}=\frac{(x-1)(x-2)(x-0)}{(3-1)(3-2)(3-0)} x(x-1)(x-2) . \\
L_{4}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)}=\frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}=\frac{1}{6}(x-1)(x-2)(x-3) .
\end{gathered}
$$

Then

$$
\begin{aligned}
P(x) & =y_{1} L_{1}(x)+y_{2} L_{2}(x)+y_{3} L_{3}(x)+y_{4} L_{4}(x) \\
& =L_{1}(x)+L_{2}(x)+2 L_{3}(x)-L_{4}(x) \\
& =\frac{1}{2} x(x-2)(x-3)-\frac{1}{2} x(x-1)(x-3)+\frac{1}{3} x(x-1)(x-2)+\frac{1}{6}(x-1)(x-2)(x-3)
\end{aligned}
$$

After expanding and simplifying, we get

$$
P(x)=\frac{1}{2} x^{3}-\frac{5}{2} x^{2}+4 x-1
$$

