Name: \qquad
Approximate the integral $\int_{1}^{3} x^{2} d x$ by taking 5 equally spaced sample points $1=x_{1}<\ldots<x_{5}=3$ and using

- left-point rule,
- right-point rule,
- midpoint rule,
- trapezoidal rule.

$$
\begin{aligned}
& f(x)=x^{2} \\
& y_{1}=f\left(x_{1}\right)=f(1)=1^{2}=1 \\
& y_{2}=1.5^{2}=2.25 \\
& y_{3}=2^{2}=4 \\
& y_{4}=2.5^{2}=6.25 \\
& y_{5}=3^{2}=9
\end{aligned}
$$

* Left point rule:

$$
\begin{aligned}
\int_{1}^{3} x^{2} d x \approx h\left(y_{1}+\cdots+y_{4}\right) & =0.5(1+2.25+4+6.25) \\
& =\cdots
\end{aligned}
$$

* Right-point rule:

$$
\begin{aligned}
\int_{1}^{3} x^{2} d x \approx h\left(y_{2}+\cdots+y_{n}\right) & =0.5(2.25+4+6.25+9) \\
& =\cdots
\end{aligned}
$$

* Midpoint rule:

$$
\begin{aligned}
\int_{1}^{3} x^{2} d x & \approx h\left(\frac{x_{1}+x_{2}}{2}\right)^{2}+h\left(\frac{x_{2}+x_{3}}{2}\right)^{2}+\cdots+h\left(\frac{x_{4}+x_{5}}{2}\right)^{2} \\
& =0.5\left(\frac{1+1.5}{2}\right)^{2}+\cdots+0.5\left(\frac{2.5+3}{2}\right)^{2}=\cdots
\end{aligned}
$$

* Trapezoid rule:

$$
\int_{1}^{3} x^{2} d x \approx h\left(y_{1}+2 y_{2}+\ldots+2 y_{4}+y_{5}\right)=0.5(1+2(2.25)+\cdots+2(6.25)+9)
$$

