Name: \qquad
Let us compute approximately the integral $I=\int_{1}^{3} x^{2} d x$ by

- left-point rule (call the sum L_{n}),
- trapezoidal rule (call the sum T_{n}),
with $n+1$ equally spaced sample points $1=x_{0}<\ldots<x_{n}=3$.
(a) Write L_{n} and T_{n} using sigma notation.
(b) Find n such that L_{n} approximates I with error not exceeding $\epsilon=10^{-4}$.
(c) The same question as in Part (b) for T_{n}.

Left-point rule:

$$
I=\int_{1}^{2} \underbrace{x^{2} d x}_{f(x)}=\sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x) d x \quad \text { (summing over the } \quad \text { subintervals) }
$$

$$
\approx \sum_{k=0}^{n-1} h f\left(x_{k}\right) \quad \text { (left-pont rule) }
$$

$$
\begin{aligned}
=\sum_{k=0}^{n-1} \frac{2}{n} x_{k}^{2} & =\frac{2}{n} \sum_{k=0}^{n-1} x_{k}^{2} \\
L_{n} & =\frac{2}{n} \sum_{k=0}^{n-1}\left(1+\frac{2 k}{n}\right)^{2}
\end{aligned}
$$

We know that

$$
\left|I-L_{n}\right| \leq \frac{M}{2} \frac{(b-a)^{2}}{n} \quad \text { where } \quad\left\{\begin{array}{l}
a=1, b=3 \\
M=\max _{x \in[a, b]}\left|f^{\prime}(x)\right|
\end{array}\right.
$$

We have $M=\max _{x \in[1,3]}|2 x|=\max _{x \in[7,3]} 2 x=6$.
Thus, $|I-\ln | \leq \frac{6}{3} \frac{(3-1)^{2}}{n}=\frac{8}{n}$
To get $\left|I-L_{n}\right|<10^{-4}$, we only need n such that

$$
\frac{8}{h}<10^{-4}
$$

This is equivalent to $n>80000$. (A big number!)
The trapezoid rule will be mentioned in class soon.

