|--|

Let us compute approximately the integral $I = \int_1^3 x^2 dx$ by

- left-point rule (call the sum L_n),
- trapezoidal rule (call the sum T_n),

with n+1 equally spaced sample points $1 = x_0 < \ldots < x_n = 3$.

- (a) Write L_n and T_n using sigma notation.
- (b) Find n such that L_n approximates I with error not exceeding $\epsilon = 10^{-4}$.
- (c) The same question as in Part (b) for T_n .

$$20 = 1$$
 $21 = 1 + 1$
 $21 = 1 + 2h$
 $21 = 1 + 2h$

Sample points, where $h = \frac{3-1}{n} = \frac{2}{n}$

Left-point rule:

$$I = \int_{1}^{2} x^{2} dx = \sum_{k=0}^{n-1} \int_{2k}^{2k+1} f(x) dx \quad (summing over the subintervals)$$

$$\approx \sum_{k=0}^{n-1} h f(x_{k}) \quad (left-point rule)$$

$$= \sum_{k=0}^{n-1} \frac{2}{n} x_{k}^{2} = \frac{2}{n} \sum_{k=0}^{n-1} x_{k}^{2}$$

$$|I-L_n| \leq \frac{M}{2} \frac{(b-a)^2}{n}$$
 where $\begin{cases} a=1, b=3 \\ M=\max\{e'(x)\} \end{cases}$

We have
$$M = man |2x| = man |2x| = 6$$
.

 $x \in [1,3]$
 $x \in [1,3]$

Thus,
$$|I-L_n| \leq \frac{6}{3} \frac{(3-1)^2}{n} = \frac{8}{n}$$

To get
$$|I-L_n| < 10^{-4}$$
, we only need a such that $\frac{8}{h} < 10^{-4}$.

This is equivalent to n > 80000. (A big number!)

The trapezoid rule will be mentioned in class soon.