Name: \qquad

1. Let us compute approximately the integral $I=\int_{2}^{5} \frac{1}{x} d x$ by trapezoidal rule (call the sum T_{n}) with $n+1$ equally spaced sample points $2=x_{0}<\ldots<x_{n}=5$.
(a) Write T_{n} using sigma notation.
(b) Find n such that T_{n} approximates I with error not exceeding $\epsilon=10^{-4}$.

For Part (a), see lecture note.
(b) We know that

$$
\begin{aligned}
& \text { We know that } \\
& \begin{aligned}
\left|T_{n}-I\right| & =e_{n} \leq \frac{\tilde{M}(b-a)^{3}}{12 n^{2}} \\
\text { where } \tilde{M} & =\operatorname{mar}_{\text {Car }}\left|f^{\prime \prime}(x)\right|, \\
{[a, b] } & =[2,5], \\
f(x) & =\frac{1}{x} .
\end{aligned}
\end{aligned}
$$

we have

$$
\tilde{M}=\max _{(25)} \frac{2}{x^{3}}=\frac{2}{2^{3}}=\frac{1}{4} .
$$

Thus,

$$
e_{n} \leq \frac{1 / 4(5-2)^{3}}{12 n^{2}}=\frac{9}{16 n^{2}} .
$$

for $e_{n} \leqslant 10^{-4}$, we need $\frac{9}{164^{2}} \leqslant 10^{-4}$.
Therefore, $x \geqslant 75$.
2. Approximate the integral in Problem 1 using Simpson's rule with $n=6$. How large should n (even number) be such that the Simpson sum S_{n} approximates I with error not exceeding $\epsilon=10^{-4}$?

$$
\begin{aligned}
& \text { Simpson's rule will be introduced } \\
& \text { later in class. }
\end{aligned}
$$

