Worksheet 12/06/2019

1. Find the polynomial the fits the following points by Lagrange and Newton methods: (-1,1), (0,-1), (1,1), (2,0).

2. Let $f(x) = \frac{1}{2+3x}$. For evenly spaced sample points $1 = x_1 < x_2 < \ldots < x_n = 2$, let P_n be the corresponding interpolation polynomial. Find n such that the integral $\int_1^2 P_n(x) dx$ approximates the integral $\int_1^2 f(x) dx$ with error not exceeding 10^{-4} .

- 3. We want to find an approximate value of the integral $I = \int_2^4 \frac{1}{x^3+1} dx$. Let n be the number of equal subintervals of the interval [2,4].
 - (a) Use midpoint rule for n = 5.
 - (b) Use Simpson rule for n = 5.

nder 10^{-4} ? The same question for Simpson rule.						

4. In Problem 3, how big should n be such that the approximate value of I by midpoint rule is