Name: \qquad
Find the Taylor polynomial (of general degree), about $x_{0}=0$, of the following functions using the Σ notation.
(a) $\frac{1}{2-x}$

Bound the error in degree n approximation for $|x| \leq 1 / 2$.

$$
\text { Put } f(x)=\frac{1}{2-x}
$$

Then $f^{\prime}(x)=\frac{1}{(2-x)^{2}}, f^{\prime \prime}(x)=2 \frac{1}{(2-x)^{3}}$,

$$
f^{\prime \prime \prime}(x)=2 \cdot 3 \cdot \frac{1}{(2-x)^{4}}, \ldots ., f^{(n)}(x)=1 \cdot 2 \ldots \cdot n \cdot \frac{1}{(2-x)^{n}+1}=n!\frac{1}{(2-x)^{n+1}}
$$

Plug $x=0: \quad f^{(n)}(0)=\frac{n!}{2^{n+1}}$
Then

$$
\begin{aligned}
f(x) & =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+R_{n}(x) \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}+R_{n}(x)=(\underbrace{\sum_{k=0}^{n} \frac{x^{k}}{2^{k+1}}}_{P_{n}(x)}+R_{n}(x)
\end{aligned}
$$

(b) $\frac{1}{2+3 x}$

$$
\begin{aligned}
\frac{1}{2+3 x} & =\frac{1}{2} \frac{1}{1+\frac{3 x}{2}} \\
& =\frac{1}{2} \frac{1}{1-u}
\end{aligned}
$$

where $u=-\frac{3 x}{2}$.
Estimate error:

$$
\begin{aligned}
R_{n}(x) & =\frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!} x^{n+1} \\
& =\frac{(n+1)!}{(n+1)!} \frac{1}{\left(2-c_{x}\right)^{n+2}} x^{n+1}=\frac{x^{n+1}}{\left(2-c_{x}\right)^{n+2}}
\end{aligned}
$$

Note that c_{x} is in between 0 and x. Because $|x| \leqslant 1 / 2$, both x and c_{x} are in between $-1 / 2$ and $1 / 2$. Then
Using the identity

$$
\frac{1}{1-u}=1+u+u^{2}+u^{3}+\cdots
$$

$$
\begin{array}{r}
\left|R_{n}(x)\right|=\frac{|x|^{n+1}}{\left(2-c_{x}\right)^{n+2}} \leq \frac{(1 / 2)^{n+1}}{(2-1 / 2)^{n+2}}=\frac{1}{2^{n+1}}\left(\frac{2}{3}\right)^{n+2} \\
\left|R_{n}(x)\right| \leqslant \frac{2}{3^{n+2}}
\end{array}
$$

we get

$$
\frac{1}{2+3 x}=\frac{1}{2} \sum_{k=0}^{n}\left(-\frac{3 x}{2}\right)^{k}+\overline{R_{n}(x)}=\frac{1}{2} \sum_{k=0}^{n}\left(-\frac{3}{2}\right)^{k} x^{k}+R_{n}(x)
$$

(c)

Hint: $\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}$.

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{k=0}^{\infty} x^{k}
$$

Take derivative of both sides:

$$
\frac{1}{(1-k)^{2}}=\sum_{k=1}^{\infty} k x^{k-1}=\sum_{l=0}^{\infty}(l+1) x^{l}
$$

Thus,

$$
\frac{1}{(1-x)^{2}}=\underbrace{\sum_{l=0}^{n}(l+1) x^{l}}_{\operatorname{pn}(x)}+R_{n}(x)
$$

(d) $\arctan x$

Hint: $\arctan ^{\prime}(x)=\frac{1}{1+x^{2}}$
$\frac{1}{1+x^{2}}=\frac{1}{1-u} \quad$ where $\quad u=-x^{2}$

$$
=1+u+u^{2}+u^{3}+\cdots=\sum_{k=0}^{\infty} u^{k}=\sum_{k=0}^{\infty}\left(-x^{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}
$$

Taking anti-derivatives of both sides, we get:

$$
\arctan x+C=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}
$$

Plug $x=0$, get $c=0$. Thus,

$$
\arctan x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=(\underbrace{\sum_{k=0}^{n-1}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}}_{P_{2 n-1}(x)}+R_{2 n-1}(x)
$$

