Homework 3 Due 4/25/2019

Problems 1, 2, 3 are computational. *Make sure to write down every computational step.* You can double check your answers using Mathematica, for example,

1. Write the following complex numbers in standard form. Use the principal branch of the logarithm if necessary.

(a) 4^i	(f) $\cos(-2+i)$
(b) $(1+i\sqrt{3})^{i/2}$	(g) $\sin\left(\frac{\pi+4i}{4}\right)$
(c) $(-1)^{\sqrt{2}}$	(h) $\tan\left(\frac{\pi+i}{2}\right)$
(d) $(i-1)^{2i+3}$	(i) $\cosh\left(\frac{4-i\pi}{4}\right)$
(e) $e^{\sin i}$	(j) $\sinh(1+i\pi)$

2. Find all complex values of the following:

(a) $\log(\sqrt{3}-i)$	(c) $\arcsin(1+i)$
(b) $\log(-ie)$	

3. Determine if each of the following statements is true. If it is, prove it. If it is not, give a counterexample.

(a) $\sqrt{-z} = i\sqrt{z}$	(d) $\sin(z+2\pi) = \sin z$
(principal branch being used)	(e) $\sin(\pi - z) = \sin z$
(b) $\cos^2 z + \sin^2 z = 1$	(c) $\sin(\pi - z) = \sin z$
(c) $ \cos z ^2 + \sin z ^2 = 1$	(f) $e^{\overline{z}} = \overline{e^z}$

- 4. Let f(z) be a branch of the multi-valued function $z^{1/4}$ such that f(1) = -i. Find f(4i).
- 5. Let $f(z) = \sqrt{z-1}\sqrt[3]{z-i}$ where each root function is defined using the principal logarithm (whose domain is $\mathbb{C}\setminus\mathbb{R}_{\leq 0}$). Find the domain of f.
- 6. To each multi-valued function in Part (a) and (b), define a *continuous single-valued* branch for it using the following procedure:
 - Choose a branch for the logarithm. Recall that this amounts to choosing a branch for the argument function arg z. Restricting the argument to any interval of length 2π , for example, $(-\pi, \pi]$, $[0, 2\pi)$, $[-\pi/4, 7\pi/4)$, etc would each give a branch.
 - Cut the complex plane: each interval chosen for the argument corresponds to a curve to be removed from the complex plane. For example, if the interval $[0, 2\pi)$ is chosen, the curve to remove is $\{z : \operatorname{Arg} z = 0\} \cup \{0\}$.
 - Determine the domain of this single-valued function. That is, the set of all z's such that the expression inside the logarithm does not lie on the branch cut. (Geometry is useful.)
 - Testing: pick two points in the domain of the above function f(z) (say, $z_1 = 2i + 1$ and $z_2 = -2 + i$ if possible). Compute $f(z_1)$ and $f(z_2)$.

(Note that Step 2 and 3 would not be necessary if the continuity requirement is removed.)

- (a) $\log(z^5)$
- (b) $\log(z^2 + 1)$

The purpose of the following problem is to use Mathematica to visualize some mapping properties of the function $f(z) = \sin z$. Make sure to write the Mathematica code you use, give explanation and some comments on the graph. Similar properties of the exponential function e^z are addressed in the supplemental material "Mapping properties via Mathematica" posted on the course website.

From Problem 2, we know that $f(z+2\pi) = f(z)$ and $f(\pi-z) = f(z)$. To consider some mapping properties of f(z), we restrict the domain of f to the infinite vertical strip $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times (-\infty, \infty)$.

- 7. (a) Draw the image under f of the rectangle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \left[-1, 1\right]$.
 - (b) Draw the images under f some grid lines (horizontal and vertical). Based on the picture, what are the images of the line $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$?
 - (c) What region does f map the vertical strip $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times (-\infty, \infty)$ onto ? Is it also a one-to-one mapping?
 - (d) What region does f map the open vertical strip $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times (-\infty, \infty)$ onto ? Is it also a one-to-one mapping?