Homework 3

Due 4/25/2019

Problems 1, 2, 3 are computational. Make sure to write down every computational step. You can double check your answers using Mathematica, for example,

$$
\begin{aligned}
& N[\operatorname{Sin}[1-I]] \\
& 1.29846-0.634964 ~ I
\end{aligned}
$$

1. Write the following complex numbers in standard form. Use the principal branch of the logarithm if necessary.
(a) 4^{i}
(f) $\cos (-2+i)$
(b) $(1+i \sqrt{3})^{i / 2}$
(g) $\sin \left(\frac{\pi+4 i}{4}\right)$
(c) $(-1)^{\sqrt{2}}$
(h) $\tan \left(\frac{\pi+i}{2}\right)$
(d) $(i-1)^{2 i+3}$
(i) $\cosh \left(\frac{4-i \pi}{4}\right)$
(e) $e^{\sin i}$
(j) $\sinh (1+i \pi)$
2. Find all complex values of the following:
(a) $\log (\sqrt{3}-i)$
(c) $\arcsin (1+i)$
(b) $\log (-i e)$
3. Determine if each of the following statements is true. If it is, prove it. If it is not, give a counterexample.
(a) $\sqrt{-z}=i \sqrt{z}$
(d) $\sin (z+2 \pi)=\sin z$
(principal branch being used)
(e) $\sin (\pi-z)=\sin z$
(b) $\cos ^{2} z+\sin ^{2} z=1$
(f) $e^{\bar{z}}=\overline{e^{z}}$
4. Let $f(z)$ be a branch of the multi-valued function $z^{1 / 4}$ such that $f(1)=-i$. Find $f(4 i)$.
5. Let $f(z)=\sqrt{z-1} \sqrt[3]{z-i}$ where each root function is defined using the principal logarithm (whose domain is $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$). Find the domain of f.
6. To each multi-valued function in Part (a) and (b), define a continuous single-valued branch for it using the following procedure:

- Choose a branch for the logarithm. Recall that this amounts to choosing a branch for the argument function $\arg z$. Restricting the argument to any interval of length 2π, for example, $(-\pi, \pi],[0,2 \pi),[-\pi / 4,7 \pi / 4)$, etc would each give a branch.
- Cut the complex plane: each interval chosen for the argument corresponds to a curve to be removed from the complex plane. For example, if the interval $[0,2 \pi)$ is chosen, the curve to remove is $\{z: \operatorname{Arg} z=0\} \cup\{0\}$.
- Determine the domain of this single-valued function. That is, the set of all z 's such that the expression inside the logarithm does not lie on the branch cut. (Geometry is useful.)
- Testing: pick two points in the domain of the above function $f(z)$ (say, $z_{1}=2 i+1$ and $z_{2}=-2+i$ if possible). Compute $f\left(z_{1}\right)$ and $f\left(z_{2}\right)$.
(Note that Step 2 and 3 would not be necessary if the continuity requirement is removed.)
(a) $\log \left(z^{5}\right)$
(b) $\log \left(z^{2}+1\right)$

The purpose of the following problem is to use Mathematica to visualize some mapping properties of the function $f(z)=\sin z$. Make sure to write the Mathematica code you use, give explanation and some comments on the graph. Similar properties of the exponential function e^{z} are addressed in the supplemental material "Mapping properties via Mathematica" posted on the course website.

From Problem 2, we know that $f(z+2 \pi)=f(z)$ and $f(\pi-z)=f(z)$. To consider some mapping properties of $f(z)$, we restrict the domain of f to the infinite vertical strip $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times(-\infty, \infty)$.
7. (a) Draw the image under f of the rectangle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[-1,1]$.
(b) Draw the images under f some grid lines (horizontal and vertical). Based on the picture, what are the images of the line $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$?
(c) What region does f map the vertical strip $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times(-\infty, \infty)$ onto ? Is it also a one-toone mapping?
(d) What region does f map the open vertical strip $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\infty, \infty)$ onto ? Is it also a one-to-one mapping?

