Homework 4 Due 5/2/2019

- 1. Let $G = \{z \in \mathbb{C} : |z| < 2 \text{ and } \operatorname{Re}(z^2) \le 1\}.$
 - (a) Sketch the region G.*Hint:* use command **RegionPlot** of Mathematica.
 - (b) Determine the interior points of G.
 - (c) Determine the boundary points of G.
 - (d) Determine whether G is open, or closed, or neither.
- 2. To each of the following functions, determine the region of continuity. That is, find the set of *all points* where the function is continuous. Make sure to justify your answers.
 - (a) $f(z) = \overline{z}$
 - (b) f(z) = |z|
 - (c) $f(z) = \sinh z$
 - (d) $f(z) = (z+1)^{1/2}$ (principal branch being used)
 - (e) f(z) = Log(z-i) + Log(z+i)
- 3. Find a parametrization for each of the following curves:
 - (a) the circle centered at 1 + i with radius 3,
 - (b) the line segment from -1 i to 2i,
 - (c) the infinite line passing through 1 2i and 2 + i,
 - (d) the upper half of the circle centered at -1 + i with radius 2 oriented clockwise.
- 4. Do Problem 2.18 (a), (b), (h) on page 32 of the textbook.

The purpose of the next problem is to use Mathematica to visualize the multivalued function $\log(z^3+1)$. Make sure to write the Mathematica code you use, give explanation and some comments on the graph. Similar treatment is done for function $\log(z^2 + i)$ in the supplemental material "Multivalued functions via Mathematica" posted on the course website.

- 5. Consider the multivalued function $g(z) = \log(z^3 + 1)$.
 - (a) By the definition of logarithm, what is the real part and imaginary part of g(z)?
 - (b) Graph the real part of g(z).
 - (c) Call the imaginary part f(z). Use the principal branch of the argument function (that is, Arg) to write the corresponding branch of f(z). Call it F(z).
 - (d) Graph F(z). Then compute F(1+i) by hand.
 - (e) Based on the graph of F(z), describe geometrically the branch cut and branch point(s).
 - (f) Compute these branch points (complex numbers written in standard or polar form).
 - (g) Find the branch cut by solving for z's such that $z^3 + 1 \in \mathbb{R}_{\leq 0}$. Hint: locate z^3 on the complex plane, then use geometry to locate z.
 - (h) Concatenate several branches of f(z) to get a graph of f(z). (For better visualization, use only 2 or 3 consecutive branches, for example k = -1, 0, 1.)