Homework 4

Due 5/2/2019

1. Let $G=\left\{z \in \mathbb{C}:|z|<2\right.$ and $\left.\operatorname{Re}\left(z^{2}\right) \leq 1\right\}$.
(a) Sketch the region G.

Hint: use command RegionPlot of Mathematica.
(b) Determine the interior points of G.
(c) Determine the boundary points of G.
(d) Determine whether G is open, or closed, or neither.
2. To each of the following functions, determine the region of continuity. That is, find the set of all points where the function is continuous. Make sure to justify your answers.
(a) $f(z)=\bar{z}$
(b) $f(z)=|z|$
(c) $f(z)=\sinh z$
(d) $f(z)=(z+1)^{1 / 2}$ (principal branch being used)
(e) $f(z)=\log (z-i)+\log (z+i)$
3. Find a parametrization for each of the following curves:
(a) the circle centered at $1+i$ with radius 3 ,
(b) the line segment from $-1-i$ to $2 i$,
(c) the infinite line passing through $1-2 i$ and $2+i$,
(d) the upper half of the circle centered at $-1+i$ with radius 2 oriented clockwise.
4. Do Problem 2.18 (a), (b), (h) on page 32 of the textbook.

The purpose of the next problem is to use Mathematica to visualize the multivalued function $\log \left(z^{3}+1\right)$. Make sure to write the Mathematica code you use, give explanation and some comments on the graph. Similar treatment is done for function $\log \left(z^{2}+i\right)$ in the supplemental material "Multivalued functions via Mathematica" posted on the course website.
5. Consider the multivalued function $g(z)=\log \left(z^{3}+1\right)$.
(a) By the definition of logarithm, what is the real part and imaginary part of $g(z)$?
(b) Graph the real part of $g(z)$.
(c) Call the imaginary part $f(z)$. Use the principal branch of the argument function (that is, Arg) to write the corresponding branch of $f(z)$. Call it $F(z)$.
(d) Graph $F(z)$. Then compute $F(1+i)$ by hand.
(e) Based on the graph of $F(z)$, describe geometrically the branch cut and branch point(s).
(f) Compute these branch points (complex numbers written in standard or polar form).
(g) Find the branch cut by solving for z 's such that $z^{3}+1 \in \mathbb{R}_{\leq 0}$. Hint: locate z^{3} on the complex plane, then use geometry to locate z.
(h) Concatenate several branches of $f(z)$ to get a graph of $f(z)$. (For better visualization, use only 2 or 3 consecutive branches, for example $k=-1,0,1$.)

