Homework 5

Due 5/16/2019

1. Evaluate the following limits. You can use the command Limit in Mathematica to double check your results. Try the example: Limit[1/(z + I), z -> Infinity]
(a) $\lim _{z \rightarrow i} \frac{z^{3}+i}{z-i}$
(c) $\lim _{z \rightarrow 0} \frac{e^{z}-1}{\log (z+1)}$
(b) $\lim _{z \rightarrow 0} \frac{\log (z+i)-\log i}{z}$
(d) $\lim _{z \rightarrow \infty} z \sin \left(\frac{1}{z}\right)$
Hint: change variable $w=1 / z$.
2. Consider the function $f(z)=z /|z|$.
(a) Write $f(z)$ in complex standard form $f=u+i v$. In other words, determine $\operatorname{Re} f(z)$ and $\operatorname{Im} f(z)$.
(b) Use Mathematica to plot u and v. Hint: use command Plot3D.
(c) Find the limit of $f(z)$ as z approaches 0 along each of the following paths:

- the negative side of the real axis,
- the positive side of the real axis,
- the negative side of the imaginary axis,
- the positive side of the imaginary axis.
(d) Find the limit of $f(z)$ as z approaches ∞ along each of the following paths:
- the positive side of the real axis,
- the positive side of the imaginary axis.

3. The principal argument is given by

$$
\operatorname{Arg} z=\left\{\begin{array}{cl}
\arctan \left(\frac{y}{x}\right) & \text { if } \quad x>0 \\
\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) & \text { if } y>0 \\
-\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) & \text { if } \quad y<0
\end{array}\right.
$$

where $z=x+i y$. Use Cauchy-Riemann theorem to verify that the function $f(z)=\log z$ is holomorphic on $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
4. Verify that an antiderivative of $f(z)=\log z$ on the region $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$ is $F(z)=z \log z-z$.
5. Consider the function $f(z)=\log z+\log (i z-i)$.
(a) Determine the region where $f(z)$ is holomorphic.
(b) Determine all antiderivatives of $f(z)$ on this region.
6. (Similar to Problem 4.5 on page 69 of the textbook) Use the definition of complex integration to integrate the following functions over the upper semicircle $C_{2}(0)$ oriented counter-clockwise.
(a) $f(z)=z+\bar{z}$
(d) $f(z)=\frac{1}{z^{4}}$
Hint: use de Moivre's formula.
(b) $f(z)=z^{2}-2 z+3$
(c) $f(z)=x y$

