Multivalued functions via Mathematica

Among many multivalued complex functions are the argument function $\arg z$, the logarithm $\log z$, the inverse sine $\arcsin z$, inverse cosine $\arccos z$, and the power function z^{a} (a is non-integer). These are not functions in usual sense. One can only do calculus on a portion, called single-valued branch or simply branch, of a multi-valued function.

As you have seen in Homework 2, a single-valued function $f(z)$ can be visualized by sketching its real part $\operatorname{Re} f(z)$, imaginary part $\operatorname{Im} f(z)$, modulus $|f(z)|$, principal argument $\operatorname{Arg} f(z)$ separately. Likewise, a multivalued function can also be visualized by sketching its real part, imaginary part, modulus, argument separately. However, each of these parts itself can be multivalued. For example, function $\log z$ has multivalued imaginary part, function $z^{1 / 3}$ has multivalued argument, function $\arg z$ has multivalued real part (with zero imaginary part). From Homework 2, you already see that the "graph" of $\arg z$ looks like a parking deck with infinitely many floors.

This note will help you use Mathematica to visualize more general multivalued functions, their branches, branch cuts, and branch points. Let us consider a multivalued function $\log \left(z^{2}+i\right)$. By the definition of logarithm,

$$
\log \left(z^{2}+i\right)=\ln \left|z^{2}+i\right|+i \arg \left(z^{2}+i\right)
$$

The real part of this function is single-valued. One can graph it using command Plot3D in Mathematica:

$$
\operatorname{Plot3D}[\log [\operatorname{Abs}[(x+y * I) \wedge 2+I]],\{x,-2,2\},\{y,-2,2\}]
$$

The imaginary part is multivalued

$$
f(z)=\arg \left(z^{2}+i\right)
$$

It is the composite of multivalued function $\arg w$ and single-valued function $z^{2}+i$. Here we use the name w instead of z to avoid confusion. Function $f(z)$ would become single-valued if we specify a branch for $\arg w$. This is done by restricting the range of function $\arg w$ to, for example, $(-\pi, \pi]$. One obtains a branch for $\arg w$ (the principal branch, denoted by $\operatorname{Arg} w$), and thereby obtains a branch for function $f(z)$, namely

$$
F(z)=\operatorname{Arg}\left(z^{2}+i\right)
$$

One can sketch $F(z)$ by the command Plot3D in Mathematica:

$$
\operatorname{Plot} 3 \mathrm{D}\left[\operatorname{Arg}\left[(\mathrm{x}+\mathrm{y} * \mathrm{I})^{\wedge} 2+\mathrm{I}\right],\{x,-2,2\},\{y,-2,2\}\right]
$$

This is the graph of only one branch of $f(z)$. Other branches come from branches of $\arg w$ other than $\operatorname{Arg} w$, namely $\operatorname{Arg} w+k 2 \pi$ where $k \in \mathbb{Z}$. Therefore, all branches of $f(z) \operatorname{are} \operatorname{Arg}\left(z^{2}+i\right)+k 2 \pi$, which is $F(z)+k 2 \pi$. For each k, one draws the graph of $F(z)+k 2 \pi$. The combination of all these graphs gives a full picture of $f(z)$. In other words, the "graph" of the multivalued function $f(z)$ is a concatenation of copies of the graph of $F(z)$. Each copy is a vertical shift by a multiple of 2π of the graph of $F(z)$. In Mathematica,

Figure 1: Graph of $F(z)$

```
p[k_] := Plot3D[Arg[(x + y*I)^2 + I] + k*2*Pi, {x, -2, 2}, {y, -2, 2}]
Show[p[0], p[1], PlotRange -> All]
```


Figure 2: Two branches of multivalued function $f(z)$
Now look back to Figure 1. There are two curves on the complex plane where function $F(z)$ exhibits jumps (discontinuity). These jumps are due to discontinuity of function $\operatorname{Arg} w$ across the negative real axis $\mathbb{R}_{\leq 0}$. It is usually preferable to do calculus with continuous functions. Although $\operatorname{Arg} w$ is well-defined on $\mathbb{C} \backslash\{0\}$, it is only continuous on $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. By forbidding w from lying on $\mathbb{R}_{\leq 0}$, one obtains a continuous restriction of $\operatorname{Arg} w$. The ray $\{\arg w=\pi(\bmod 2 \pi)\}$ is a branch cut of $\arg w$. A branch cut is used to create a continuous single-valued branch for a multivalued function. Once this branch cut is applied, it induces a branch cut for $f(z)$. Indeed, all z 's such that $z^{2}+i \in \mathbb{R}_{\leq 0}$ have to be removed from the domain of $f(z)$. From Figure 1 (b), we see that these removed points form two curves (where discontinuity occurs). The combination of these two curves is a branch cut of $f(z)$. Each curve emanates from a point and goes to infinity. Each point is a branch point. They are roots of $z^{2}+i=0$. In other words, the branch point 0 of $\arg w$ induces branch points for $f(z)$. One can notice from Figure 2 that branch cut is where different branches are connected to each other to form "graph" of the multivalued function.

Next, we consider what happens if a different branch cut for $\arg w$ is used. Instead of restricting argument to be in $(-\pi, \pi]$, we restrict it to the interval $(\theta, \theta+2 \pi]$, where θ is some given number. In this case, the branch cut $\{\arg w=\theta(\bmod 2 \pi)\}$ is chosen. This choice affects how one calculates argument of a given point. If $\theta=-5 \pi / 7$ is chosen then the argument of $-1-i$ will be $5 \pi / 4$ which belongs to $(-5 \pi / 7,-5 \pi / 7+2 \pi)$. On the other hand, if $\theta=-\pi$ is chosen then the argument of $-1-i$ will be $-3 \pi / 4$, which belongs to $(-\pi,-\pi+2 \pi]$. More generally, the branch of $\arg w$ created by branch cut $\{\arg w=\theta(\bmod 2 \pi)\}$ with range $(\theta, \theta+2 \pi]$ is given by:

$$
\operatorname{Arg}_{\theta}(w)=\operatorname{Arg}\left(w e^{-i(\theta+\pi)}\right)+\theta+\pi
$$

We define it in Mathematica as follows:

```
theta = -Pi/2
ARG[x_, y_] := Arg[(x + y*I)*E^(-I*(theta + Pi))] + theta + Pi
```


Figure 3: Different branch cuts of $\arg w$

In general, a different branch cut of $\arg w$ induces a different branch cut of $f(z)$. For example, when $\theta=-\pi / 2$ then the branch cut of $f(z)$ is now made of two straight rays (Figure 4). In Mathematica,

```
q[k_] := Plot3D[ARG[Re[(x + y*I)^2 + I], Im[(x + y*I)^2 + I]] + k*2*Pi,
    {x, -2, 2}, {y, -2, 2}]
Show[q[0], PlotRange -> All]
Show[q[0], q[1], PlotRange -> All]
```


(a) Branch $k=0$

(b) Branches $k=0$ and $k=1$

Figure 4
When all branches are concatenated (i.e. when all $k \in \mathbb{Z}$ are put together), the graph of $f(z)$ is the same as before (Figure 1). Figure 1 corresponds to the case $\theta=-\pi$, in which the domain of each branch of $f(z)$ is $\mathbb{C} \backslash\{$ two curves $\}$. Figure 4 corresponds to the case $\theta=-\pi / 2$, in which the domain of each branch is $\mathbb{C} \backslash\{$ two rays $\}$. In summary, different ways of choosing branch cut result in different ways of decomposing the graph of $f(z)$ into "floors". Each floor defines a continuous single-valued branch of $f(z)$.

