
Multivalued functions via Mathematica

Among many multivalued complex functions are the argument function arg z, the logarithm
log z, the inverse sine arcsin z, inverse cosine arccos z, and the power function za (a is non-integer).
These are not functions in usual sense. One can only do calculus on a portion, called single-valued
branch or simply branch, of a multi-valued function.

As you have seen in Homework 2, a single-valued function f(z) can be visualized by sketching its
real part Re f(z), imaginary part Im f(z), modulus |f(z)|, principal argument Arg f(z) separately.
Likewise, a multivalued function can also be visualized by sketching its real part, imaginary part,
modulus, argument separately. However, each of these parts itself can be multivalued. For example,
function log z has multivalued imaginary part, function z1/3 has multivalued argument, function
arg z has multivalued real part (with zero imaginary part). From Homework 2, you already see
that the “graph” of arg z looks like a parking deck with infinitely many floors.

This note will help you use Mathematica to visualize more general multivalued functions, their
branches, branch cuts, and branch points. Let us consider a multivalued function log(z2 + i). By
the definition of logarithm,

log(z2 + i) = ln |z2 + i|+ i arg(z2 + i).

The real part of this function is single-valued. One can graph it using command Plot3D in
Mathematica:

Plot3D[Log[Abs[(x + y*I)^2 + I]], {x, -2, 2}, {y, -2, 2}]

The imaginary part is multivalued
f(z) = arg(z2 + i).

It is the composite of multivalued function argw and single-valued function z2 + i. Here we use the
name w instead of z to avoid confusion. Function f(z) would become single-valued if we specify a
branch for argw. This is done by restricting the range of function argw to, for example, (−π, π].
One obtains a branch for argw (the principal branch, denoted by Argw), and thereby obtains a
branch for function f(z), namely

F (z) = Arg(z2 + i).

One can sketch F (z) by the command Plot3D in Mathematica:

Plot3D[Arg[(x + y*I)^2 + I], {x, -2, 2}, {y, -2, 2}]

This is the graph of only one branch of f(z). Other branches come from branches of argw other
than Argw, namely Argw+k2π where k ∈ Z. Therefore, all branches of f(z) are Arg(z2+ i)+k2π,
which is F (z) + k2π. For each k, one draws the graph of F (z) + k2π. The combination of all these
graphs gives a full picture of f(z). In other words, the “graph” of the multivalued function f(z) is
a concatenation of copies of the graph of F (z). Each copy is a vertical shift by a multiple of 2π of
the graph of F (z). In Mathematica,
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(a) Looking from an angle (b) Looking from above

Figure 1: Graph of F (z)

p[k_] := Plot3D[Arg[(x + y*I)^2 + I] + k*2*Pi, {x, -2, 2}, {y, -2, 2}]

Show[p[0], p[1], PlotRange -> All]

Figure 2: Two branches of multivalued function f(z)

Now look back to Figure 1. There are two curves on the complex plane where function F (z) exhibits
jumps (discontinuity). These jumps are due to discontinuity of function Argw across the negative
real axis R≤0. It is usually preferable to do calculus with continuous functions. Although Argw is
well-defined on C\{0}, it is only continuous on C\R≤0. By forbidding w from lying on R≤0, one
obtains a continuous restriction of Argw. The ray {argw = π (mod 2π)} is a branch cut of argw.
A branch cut is used to create a continuous single-valued branch for a multivalued function. Once
this branch cut is applied, it induces a branch cut for f(z). Indeed, all z’s such that z2 + i ∈ R≤0

have to be removed from the domain of f(z). From Figure 1 (b), we see that these removed points
form two curves (where discontinuity occurs). The combination of these two curves is a branch cut
of f(z). Each curve emanates from a point and goes to infinity. Each point is a branch point. They
are roots of z2 + i = 0. In other words, the branch point 0 of argw induces branch points for f(z).
One can notice from Figure 2 that branch cut is where different branches are connected to each
other to form “graph” of the multivalued function.

Next, we consider what happens if a different branch cut for argw is used. Instead of restricting
argument to be in (−π, π], we restrict it to the interval (θ, θ + 2π], where θ is some given number.
In this case, the branch cut {argw = θ (mod 2π)} is chosen. This choice affects how one calculates
argument of a given point. If θ = −5π/7 is chosen then the argument of −1− i will be 5π/4 which
belongs to (−5π/7,−5π/7 + 2π). On the other hand, if θ = −π is chosen then the argument of
−1− i will be −3π/4, which belongs to (−π,−π+ 2π]. More generally, the branch of argw created
by branch cut {argw = θ (mod 2π)} with range (θ, θ + 2π] is given by:

Argθ(w) = Arg(we−i(θ+π)) + θ + π.

We define it in Mathematica as follows:

theta = -Pi/2

ARG[x_, y_] := Arg[(x + y*I)*E^(-I*(theta + Pi))] + theta + Pi
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(a) θ = π (b) θ = −5π/7

Figure 3: Different branch cuts of argw

In general, a different branch cut of argw induces a different branch cut of f(z). For example, when
θ = −π/2 then the branch cut of f(z) is now made of two straight rays (Figure 4). In Mathematica,

q[k_] := Plot3D[ARG[Re[(x + y*I)^2 + I], Im[(x + y*I)^2 + I]] + k*2*Pi,

{x, -2, 2}, {y, -2, 2}]

Show[q[0], PlotRange -> All]

Show[q[0], q[1], PlotRange -> All]

(a) Branch k = 0 (b) Branches k = 0 and k = 1

Figure 4

When all branches are concatenated (i.e. when all k ∈ Z are put together), the graph of f(z) is
the same as before (Figure 1). Figure 1 corresponds to the case θ = −π, in which the domain of
each branch of f(z) is C\{two curves}. Figure 4 corresponds to the case θ = −π/2, in which the
domain of each branch is C\{two rays}. In summary, different ways of choosing branch cut result
in different ways of decomposing the graph of f(z) into “floors”. Each floor defines a continuous
single-valued branch of f(z).
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