
Mapping properties of inversion function

In this note, we will use Mathematica to visualize some mapping properties of the inversion
function f(z) = 1

z . The methodology explained below is applicable to any complex functions. The

inversion function plays a key role in the understanding of Möbius transformation az+b
cz+d . Recall that

Möbius transformation is a combination of four following transformations: the translation, scaling,
rotation, and inversion. Indeed, one can express

az + b

cz + d
=
a

c
+
b− ad/c
cz + d

= α+
β

z + γ

where α = a/c, β = b/c− ad/c2, γ = d/c and look at the following chain:

z
translation−−−−−−→ z + γ

inversion−−−−−→ 1

z + γ

scaling−−−−−→
rotation

β

z + γ

translation−−−−−−→ α+
β

z + γ
.

Let us start by sketching the image of a line, say the vertical line x = 1, under the inversion
function. The line x = 1 has complex parametrization z = 1 + it where t ∈ R. To plot, we need to
restrict the range of t to a finite interval, for example t ∈ [−1, 1]. To get better visualization, one
can create an “in-motion” plot by altering the range of t. The idea is that for each s > 0, we sketch
the image of line z = 1 + it for t ∈ [−s, s], under inversion. Then vary s to see how the images are
drawn out.

p1[s_] :=

ParametricPlot[ReIm[1 + t*I], {t, -s, s}, AxesOrigin -> {0, 0},

PlotRange -> {{0, 2}, {-4, 4}}]

q1[s_] :=

ParametricPlot[ReIm[1/(1 + t*I)], {t, -s, s}, AxesOrigin -> {0, 0},

PlotRange -> {{0, 1}, {-.6, .6}}]

Manipulate[{p1[s], q1[s]}, {s, .1, 4}]

The option AxesOrigin→{0,0} is to make sure that the axes intersect each other at origin (0, 0).
The option PlotRange → {{a,b},{c,d}} indicates that we want to see graph in the window
a ≤ x ≤ b, c ≤ y ≤ d. These two options can be removed. They are used only to fix the window.
Without them, the window may change as s varies, which can cause annoyance.

It seems that the image path of line z = 1 + it is the circle C1/2(1/2) with the origin excluded.
This fact can be verified rigorously as follows. The vertical line x = a has complex parametrization
z = a+ it.

f(z) =
1

a+ it
=

a− it
(a+ it)(a− it)

=
a

a2 + t2︸ ︷︷ ︸
u

+i
−t

a2 + t2︸ ︷︷ ︸
v

.
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It follows that

u2 + v2 =
1

a2 + t2
=
u

a
,

which can be rewritten (by completing square) as(
u− 1

2a

)2

+ v2 =

(
1

2a

)2

.

Therefore, f(z) = u+iv indeed lies on the circle C 1
2a

( 1
2a). Now that we know the image of a vertical

line is a circle centered at a point on the real line and passing through the origin (the origin itself
being excluded), our next question is:

What is the image of a half-plane, say {z : x > 1}, under the inversion function?

The half-plane {z : x > 1} can be viewed as the union of vertical lines x = a where a > 1. If we
sketch the image of each line, which is the circle C 1

2a
( 1
2a), and look at the family of those circles,

we can realize the image of the half-plane under inversion.

p2[a_] :=

ParametricPlot[ReIm[a + I*t], {t, -10, 10}, AxesOrigin -> {0, 0},

PlotRange -> {{0, 5}, {-5, 5}}]

q2[a_] :=

ParametricPlot[ReIm[1/(a + I*t)], {t, -10, 10}, AxesOrigin -> {0, 0},

PlotRange -> {{0, 1}, {-.6, .6}}]

Manipulate[{p2[a], q2[a]}, {a, 1, 5}]

We see that the image of the half-plane is the open disk D1/2(1/2). Next, we attempt to visualize
the angle-preserving (conformality) nature of the inversion function. Note that conformality is a
local property, i.e. a property held at a given point and/or its neighborhood. Function f(z) = 1/z
is holomorphic on C\{0} and

f(z) = − 1

z2
6= 0.

Thus, f is conformal on C\{0}. Fix a point on the complex plane, say z0 = 1 + i. Through z0,
we draw many straight lines and their images under f . The line γs passing through z0 with slope
s ∈ [0, 2π] has complex parametrization

γs(t) = z0 + teis = (1 + t cos s) + i(1 + t sin s).

Its image under f is a curve ηs with complex parametrization ηs(t) = f(γs(t)) = 1
γs(t)

. We use

Mathematica to sketch the curve γs together with its image ηs for different the values of s ∈ [0, π].
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p3[s_] :=

ParametricPlot[ReIm[1 + I + t*Exp[I*s]], {t, -1, 1},

AxesOrigin -> {0, 0}, PlotRange -> {{0, 2}, {0, 2}}]

q3[s_] :=

ParametricPlot[ReIm[1/(1 + I + t*Exp[I*s])], {t, -1, 1},

AxesOrigin -> {0, 0}, PlotRange -> {{0, 2}, {-1, 0}}]

Manipulate[{p3[s], q3[s]}, {s, 0, 2*Pi}]

We know that

• γs(0) = z0,

• γ′s(0) = eis is a tangent vector of γs at z0,

• η′s(0) is a tangent vector of ηs at f(z0) = 1
1+i = 1

2 −
1
2 i.

The chain rule gives η′s(0) = f ′(γs(0))γ′s(0) = f ′(z0)γ
′
s(0). Thus, the Arg η′s(0) = Arg f ′(z0) +

Arg γ′s(0) in modulo 2π. This means the difference between Arg γ′s(0) and Arg η′s(0) is unchanged
as s varies. This difference is equal to

Arg f ′(z0) = Arg

(
− 1

z20

)
= Arg

(
i

2

)
=
π

2
.

To draw the tangent vector on the curves γs and ηs, we first express γ′s(0) and η′s(0) in complex
standard form: γ′s(0) = cos s + i sin s and η′s(0) = i

2e
is = −1

2 sin s + 1
2 i cos s. The tangent vector

of γs at z0 is vector (cos s, sin s) based at (1, 1). The tangent vector of ηs at f(z0) is vector
(−1/2 sin s, 1/2 cos s) based at (1/2,−1/2). One can draw these vectors by adding the Epilog
option to the previous commands

p3[s_] := ParametricPlot[...,

Epilog -> {Arrow[{{1, 1}, {1, 1} + {Cos[s], Sin[s]}}]}]]

q3[s_] := ParametricPlot[...,

Epilog -> {Arrow[{{.5, -.5}, {.5, -.5} + {-.5*Sin[s], .5*Cos[s]}}]}]]

3


