Mapping properties of inversion function

In this note, we will use Mathematica to visualize some mapping properties of the inversion function $f(z)=\frac{1}{z}$. The methodology explained below is applicable to any complex functions. The inversion function plays a key role in the understanding of Möbius transformation $\frac{a z+b}{c z+d}$. Recall that Möbius transformation is a combination of four following transformations: the translation, scaling, rotation, and inversion. Indeed, one can express

$$
\frac{a z+b}{c z+d}=\frac{a}{c}+\frac{b-a d / c}{c z+d}=\alpha+\frac{\beta}{z+\gamma}
$$

where $\alpha=a / c, \beta=b / c-a d / c^{2}, \gamma=d / c$ and look at the following chain:

$$
z \xrightarrow{\text { translation }} z+\gamma \xrightarrow{\text { inversion }} \frac{1}{z+\gamma} \xrightarrow[\text { rotation }]{\text { scaling }} \frac{\beta}{z+\gamma} \xrightarrow{\text { translation }} \alpha+\frac{\beta}{z+\gamma} .
$$

Let us start by sketching the image of a line, say the vertical line $x=1$, under the inversion function. The line $x=1$ has complex parametrization $z=1+i t$ where $t \in \mathbb{R}$. To plot, we need to restrict the range of t to a finite interval, for example $t \in[-1,1]$. To get better visualization, one can create an "in-motion" plot by altering the range of t. The idea is that for each $s>0$, we sketch the image of line $z=1+i t$ for $t \in[-s, s]$, under inversion. Then vary s to see how the images are drawn out.

```
p1[s_] :=
    ParametricPlot[ReIm[1 + t*I], {t, -s, s}, AxesOrigin -> {0, 0},
        PlotRange -> {{0, 2}, {-4, 4}}]
q1[s_] :=
    ParametricPlot[ReIm[1/(1 + t*I)], {t, -s, s}, AxesOrigin -> {0, 0},
        PlotRange -> {{0, 1}, {-.6, .6}}]
Manipulate[{p1[s], q1[s]}, {s, .1, 4}]
```


The option AxesOrigin $\rightarrow\{\mathbf{0 , 0}\}$ is to make sure that the axes intersect each other at origin $(0,0)$. The option PlotRange $\rightarrow\{\{\mathbf{a}, \mathbf{b}\},\{\mathbf{c}, \mathbf{d}\}\}$ indicates that we want to see graph in the window $a \leq x \leq b, c \leq y \leq d$. These two options can be removed. They are used only to fix the window. Without them, the window may change as s varies, which can cause annoyance.

It seems that the image path of line $z=1+i t$ is the circle $C_{1 / 2}(1 / 2)$ with the origin excluded. This fact can be verified rigorously as follows. The vertical line $x=a$ has complex parametrization $z=a+i t$.

$$
f(z)=\frac{1}{a+i t}=\frac{a-i t}{(a+i t)(a-i t)}=\underbrace{\frac{a}{a^{2}+t^{2}}}_{u}+i \underbrace{\frac{-t}{a^{2}+t^{2}}}_{v} .
$$

It follows that

$$
u^{2}+v^{2}=\frac{1}{a^{2}+t^{2}}=\frac{u}{a},
$$

which can be rewritten (by completing square) as

$$
\left(u-\frac{1}{2 a}\right)^{2}+v^{2}=\left(\frac{1}{2 a}\right)^{2} .
$$

Therefore, $f(z)=u+i v$ indeed lies on the circle $C_{\frac{1}{2 a}}\left(\frac{1}{2 a}\right)$. Now that we know the image of a vertical line is a circle centered at a point on the real line and passing through the origin (the origin itself being excluded), our next question is:

What is the image of a half-plane, say $\{z: x>1\}$, under the inversion function?
The half-plane $\{z: x>1\}$ can be viewed as the union of vertical lines $x=a$ where $a>1$. If we sketch the image of each line, which is the circle $C_{\frac{1}{2 a}}\left(\frac{1}{2 a}\right)$, and look at the family of those circles, we can realize the image of the half-plane under inversion.

```
p2[a_] :=
    ParametricPlot[ReIm[a + I*t], {t, -10, 10}, AxesOrigin -> {0, 0},
        PlotRange -> {{0, 5}, {-5, 5}}]
q2[a_] :=
    ParametricPlot[ReIm[1/(a + I*t)], {t, -10, 10}, AxesOrigin -> {0, 0},
        PlotRange -> {{0, 1}, {-.6, .6}}]
Manipulate[{p2[a], q2[a]}, {a, 1, 5}]
```


We see that the image of the half-plane is the open disk $D_{1 / 2}(1 / 2)$. Next, we attempt to visualize the angle-preserving (conformality) nature of the inversion function. Note that conformality is a local property, i.e. a property held at a given point and/or its neighborhood. Function $f(z)=1 / z$ is holomorphic on $\mathbb{C} \backslash\{0\}$ and

$$
f(z)=-\frac{1}{z^{2}} \neq 0
$$

Thus, f is conformal on $\mathbb{C} \backslash\{0\}$. Fix a point on the complex plane, say $z_{0}=1+i$. Through z_{0}, we draw many straight lines and their images under f. The line γ_{s} passing through z_{0} with slope $s \in[0,2 \pi]$ has complex parametrization

$$
\gamma_{s}(t)=z_{0}+t e^{i s}=(1+t \cos s)+i(1+t \sin s) .
$$

Its image under f is a curve η_{s} with complex parametrization $\eta_{s}(t)=f\left(\gamma_{s}(t)\right)=\frac{1}{\gamma_{s}(t)}$. We use Mathematica to sketch the curve γ_{s} together with its image η_{s} for different the values of $s \in[0, \pi]$.

```
p3[s_] :=
    ParametricPlot[ReIm[1 + I + t*Exp[I*s]], {t, -1, 1},
            AxesOrigin -> {0, 0}, PlotRange -> {{0, 2}, {0, 2}}]
q3[s_] :=
    ParametricPlot[ReIm[1/(1 + I + t*Exp[I*s])], {t, -1, 1},
        AxesOrigin -> {0, 0}, PlotRange -> {{0, 2}, {-1, 0}}]
Manipulate[{p3[s], q3[s]}, {s, 0, 2*Pi}]
```


We know that

- $\gamma_{s}(0)=z_{0}$,
- $\gamma_{s}^{\prime}(0)=e^{i s}$ is a tangent vector of γ_{s} at z_{0},
- $\eta_{s}^{\prime}(0)$ is a tangent vector of η_{s} at $f\left(z_{0}\right)=\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2} i$.

The chain rule gives $\eta_{s}^{\prime}(0)=f^{\prime}\left(\gamma_{s}(0)\right) \gamma_{s}^{\prime}(0)=f^{\prime}\left(z_{0}\right) \gamma_{s}^{\prime}(0)$. Thus, the $\operatorname{Arg} \eta_{s}^{\prime}(0)=\operatorname{Arg} f^{\prime}\left(z_{0}\right)+$ $\operatorname{Arg} \gamma_{s}^{\prime}(0)$ in modulo 2π. This means the difference between $\operatorname{Arg} \gamma_{s}^{\prime}(0)$ and $\operatorname{Arg} \eta_{s}^{\prime}(0)$ is unchanged as s varies. This difference is equal to

$$
\operatorname{Arg} f^{\prime}\left(z_{0}\right)=\operatorname{Arg}\left(-\frac{1}{z_{0}^{2}}\right)=\operatorname{Arg}\left(\frac{i}{2}\right)=\frac{\pi}{2}
$$

To draw the tangent vector on the curves γ_{s} and η_{s}, we first express $\gamma_{s}^{\prime}(0)$ and $\eta_{s}^{\prime}(0)$ in complex standard form: $\gamma_{s}^{\prime}(0)=\cos s+i \sin s$ and $\eta_{s}^{\prime}(0)=\frac{i}{2} e^{i s}=-\frac{1}{2} \sin s+\frac{1}{2} i \cos s$. The tangent vector of γ_{s} at z_{0} is vector $(\cos s, \sin s)$ based at (1,1). The tangent vector of η_{s} at $f\left(z_{0}\right)$ is vector $(-1 / 2 \sin s, 1 / 2 \cos s)$ based at $(1 / 2,-1 / 2)$. One can draw these vectors by adding the Epilog option to the previous commands

```
p3[s_] := ParametricPlot[...,
Epilog -> {Arrow[{{1, 1}, {1, 1} + {Cos[s], Sin[s]}}]}]]
q3[s_] := ParametricPlot[...,
Epilog -> {Arrow[{{.5, -.5}, {.5, -.5} + {-.5*Sin[s], .5*Cos[s]}}]}]]
```


