Mapping properties of inversion function

In this note, we will use Mathematica to visualize some mapping properties of the inversion
function f(z) = % The methodology explained below is applicable to any complex functions. The

inversion function plays a key role in the understanding of Mébius transformation gjig Recall that

Mobius transformation is a combination of four following transformations: the translation, scaling,
rotation, and inversion. Indeed, one can express
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where a = a/c, 3 =b/c —ad/c?, v = d/c and look at the following chain:
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Let us start by sketching the image of a line, say the vertical line x = 1, under the inversion
function. The line x = 1 has complex parametrization z = 1 4 ¢t where t € R. To plot, we need to
restrict the range of ¢ to a finite interval, for example t € [—1,1]. To get better visualization, one
can create an “in-motion” plot by altering the range of t. The idea is that for each s > 0, we sketch
the image of line z = 1 + it for t € [—s, s], under inversion. Then vary s to see how the images are
drawn out.

plls_]1 :=
ParametricPlot [ReIm[1 + t*I], {t, -s, s}, AxesOrigin -> {0, 0},
PlotRange -> {{0, 2}, {-4, 4}}]
qlls_] :=
ParametricPlot[ReIm[1/(1 + t*I)], {t, -s, s}, AxesOrigin -> {0, 0},
PlotRange -> {{0, 1}, {-.6, .6}}]
Manipulate[{p1[s], qilsl}, {s, .1, 4}]

The option AxesOrigin—{0,0} is to make sure that the axes intersect each other at origin (0, 0).
The option PlotRange — {{a,b},{c,d}} indicates that we want to see graph in the window
a<x<b c<y<d These two options can be removed. They are used only to fix the window.
Without them, the window may change as s varies, which can cause annoyance.

It seems that the image path of line z = 1 + it is the circle C 5(1/2) with the origin excluded.
This fact can be verified rigorously as follows. The vertical line x = a has complex parametrization
z=a+1t.
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It follows that

which can be rewritten (by completing square) as
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Therefore, f(z) = u+iv indeed lies on the circle C 1 (5-). Now that we know the image of a vertical
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line is a circle centered at a point on the real line and passing through the origin (the origin itself
being excluded), our next question is:

What is the image of a half-plane, say {z : = > 1}, under the inversion function?

The half-plane {z : x > 1} can be viewed as the union of vertical lines z = a where a > 1. If we
sketch the image of each line, which is the circle C' 1 (%), and look at the family of those circles,
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we can realize the image of the half-plane under inversion.

p2[a_] :=
ParametricPlot[ReIm[a + I*t], {t, -10, 10}, AxesOrigin -> {0, 0},
PlotRange -> {{0, 5}, {-5, 5}}]
g2la_] :=
ParametricPlot[ReIm[1/(a + I*t)], {t, -10, 10}, AxesOrigin -> {0, 0},
PlotRange -> {{0, 1}, {-.6, .6}}]
Manipulate[{p2[al, g2[al}, {a, 1, 5}]

We see that the image of the half-plane is the open disk D;/5(1/2). Next, we attempt to visualize
the angle-preserving (conformality) nature of the inversion function. Note that conformality is a
local property, i.e. a property held at a given point and/or its neighborhood. Function f(z) =1/z
is holomorphic on C\{0} and

fz) =g #0.

Thus, f is conformal on C\{0}. Fix a point on the complex plane, say zp = 1 + i. Through z,
we draw many straight lines and their images under f. The line ~; passing through zy with slope
s € [0,27] has complex parametrization

Ys(t) = 2o + te'® = (1 +tcoss) + i(1+tsins).

Its image under f is a curve 7y with complex parametrization ns(t) = f(vs(t)) = 7%(15) We use

Mathematica to sketch the curve 74 together with its image 7, for different the values of s € [0, 7].



p3ls_] :=
ParametricPlot[ReIm[1 + I + t*Exp[Ixs]], {t, -1, 1},
AxesOrigin -> {0, 0}, PlotRange -> {{0, 2}, {0, 2}}]
g3[s_] :=
ParametricPlot [ReIm[1/(1 + I + t*Exp[I*s])], {t, -1, 1},
AxesOrigin -> {0, 0}, PlotRange -> {{0, 2}, {-1, 0}}]
Manipulate[{p3[s], q3[sl}, {s, 0, 2xPi}]

We know that
b '78(0) = 20,

e 1.(0) = €' is a tangent vector of v, at 2o,

e 1).(0) is a tangent vector of s at f(z9) = %ﬂ =1-

The chain rule gives 7.(0) = f'(75(0))7.(0) = f'(20)7.(0). Thus, the Argn.(0) = Arg f'(z0) +
Arg~%(0) in modulo 27r. This means the difference between Arg~’(0) and Argn.(0) is unchanged
as s varies. This difference is equal to

Arg f'(20) = Arg (—%) = Arg <;> = g

To draw the tangent vector on the curves v, and 7, we first express 7.(0) and 7%(0) in complex
standard form: 7.(0) = coss + isins and 7,(0) = e’ = —1sins+ licoss. The tangent vector
of vs at zg is vector (coss,sins) based at (1,1). The tangent vector of ns at f(zp) is vector
(—1/2sins,1/2coss) based at (1/2,—1/2). One can draw these vectors by adding the Epilog

option to the previous commands
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p3[s_] := ParametricPlot[...,
Epilog -> {Arrow[{{1, 1}, {1, 1} + {Cos[s], Sin[s]}}]1}]1]
g3[s_] := ParametricPlot[...,

Epilog -> {Arrow[{{.5, -.5}, {.5, -.5} + {-.5%Sin[s], .5*Cos[s]}}]1}]]




