Complex integral via Mathematica

In this note, we will use Mathematica to

- compute complex integrals numerically,
- calculate work / flux of a vector field along / across a curve.

Consider a fish curve [1] with parametrization $\gamma(t)=\left(\cos t-\frac{1}{\sqrt{2}} \sin ^{2} t, \cos t \sin t\right)$ where $t \in[0,2 \pi]$ and complex function $f(z)=e^{y}+i \cos x$. To sketch γ in motion as t runs from 0 to 2π, run the following commands:

```
p[s_] := ParametricPlot[{Cos[t] - Sin[t]^2/Sqrt[2],
    Cos[t]*Sin[t]}, {t, 0, s}, PlotRange -> {{-1.5, 1.5}, {-.6, .6}}]
Manipulate[p[s], {s, .01, 2*Pi}]
```


Our first goal is to compute $\int_{\gamma} f(z) d z$. One can try several methods:
(a) Use definition:

$$
\int_{\gamma} f(z) d z=\int_{0}^{2 \pi}\left[e^{\cos t \sin t}+i \cos \left(\cos t-\frac{1}{\sqrt{2}} \sin ^{2} t\right)\right](\ldots) d t=\int_{0}^{2 \pi} \ldots d t+i \int_{0}^{2 \pi} \ldots d t
$$

Each integral on the right hand side seems to be too complicated to compute analytically.
(b) Use Fundamental Theorem of Calculus:

It can be checked using Cauchy-Riemann equations that f is nowhere holomorphic. Thus, it has no antiderivatives.
(c) Use Cauchy's Integral Formula:

Since f is not in fraction form, Cauchy's Integral Formula is not applicable.
A practical approach is to compute the integral numerically based on the definition:

$$
\int_{\gamma} f(z) d z=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} f\left(z_{k}\right)\left(z_{k+1}-z_{k}\right) .
$$

Here $z_{0}, z_{1}, \ldots, z_{n}$ are sample points on the path γ. One way to get such sample points is to sample the interval $t \in[0,2 \pi]$, for example by taking $t_{0}=0<t_{1}<t_{2}<\ldots<t_{n}=2 \pi$ equally spaced. Then $z_{k}=\gamma\left(t_{k}\right)$ is a sample point on γ. In Mathematica:

```
n = 50
t[k_] := 2*Pi*k/n
z[k_] := Cos[t[k]] - Sin[t[k]]^2/Sqrt[2] + I*Cos[t[k]]*Sin[t[k]]
f[z_] := Exp[Im[z]] + I*Cos[Re[z]]
N[Sum[f[z[k]]*(z[k + 1] - z[k]), {k, 0, n - 1}]]
```

Increasing n for better approximations of the integral, we see that the integral is about -0.7906 . Note that the plot of γ is $p[2 \pi]$. One can plot the sample points on the fish curve by using the command ListPlot as follows.

```
samplePoints = Table[{Re[z[k]], Im[z[k]]}, {k, 0, n - 1}];
q = ListPlot[samplePoints, PlotStyle -> Red]
gamma = p[2*Pi]
Show[gamma, q, PlotRange -> {{-1.1, 1.1}, {-.6, .6}}]
```


The complex function $f(z)=e^{y}+i \cos x$ can be regarded as a vector field $f(x, y)=\left(e^{y}, \cos x\right)$. Our next goal is to compute the work done by f along γ, and the flux of f across γ. One can sketch the vector field together with curve on the same graph as follows.

```
vtfield = VectorPlot[{Exp[y], Cos[x]}, {x, -1.1, 1.1}, {y, -1, 1}]
Show[gamma, vtfield, PlotRange -> All]
```


Recall the formula

$$
W[f, \gamma]+i F[f, \gamma]=\int_{\gamma} \bar{f}(z) d z
$$

where $\bar{f}(z)$ is the Pólya vector field of f, given by $\bar{f}(z)=e^{y}-i \cos x$. One can repeat the numerical method mentioned earlier to compute $\int_{\gamma} \bar{f}(z) d z$, which turns out to be approximately -1.50099 . Thus, $W[f, \gamma] \approx-1.50099$ and $F[f, \gamma] \approx 0$. Can you convince yourself of this result through the picture?

References

[1] http://mathworld.wolfram.com/FishCurve.html

