
Evaluating complex integral by series

We have learned how to compute complex integral
∫
γ f(z)dz numerically: by approximating it with

Riemann sums. In this note, we consider another numerical method: using Taylor/Laurent series.
The overall idea is rather simple: first, decompose the integrand f(z) into simpler “modes”, each of
which is of the form zk. Then compute integral at each mode. Then synthesize the results obtained
at all modes to get the final result. The procedure is outlined as follows.

• Express the integrand as a power series (with positive and/or negative powers)

f(z) = . . .+ a−2z
−2 + a−1z

−1 + a0 + a1z + a2z
2 + . . . =

∞∑
k=−∞

akz
k.

• Do integration term by term∫
γ
f(z)dz = . . .+ a−2

∫
γ
z−2dz + a−1

∫
γ
z−1dz + a0

∫
γ

1dz + a1

∫
γ
zdz + a2

∫
γ
z2dz + . . .

Each integral on the right hand side is computable. For any integer k 6= −1, function zk has
antiderivative zk+1

k+1 on C if k ≥ 0, or on C\{0} if k ≤ −2. Thus,∫
γ
zkdz =

bk+1 − ak+1

k + 1

where a and b are the endpoints of γ. The case k = −1 needs more careful treatment. For example,
if γ is not a simple loop, one can try to find a branch cut for the logarithm that avoids γ. Then∫

γ
z−1dz = Log b− Log a.

If γ is a simple loop then ∫
γ
z−1dz = ±2πi

where the sign is determined by whether γ is positive or negatively oriented. To compare two
numerical methods “Riemann sum” and “mode decomposition”, one sees that the first method
seemingly ignores the integrand, only investigating the path. The second method does the opposite.
The second method seems to be more advantageous if the path parametrization is complicated
whereas the integrand is simple.

Let us demonstrate the method through an example. Let γ be a curve with parametrization{
x(t) = sin t+ sin 2t+ 2 sin 3t,
y(t) = −1 + cos t+ cos 7t

t ∈ [0, π]

and f(z) = cos z
z3

. In 1960s Robert Risch developed an algorithm to check if a function has
an antiderivative that is an elementary function, i.e. a function that can be written in terms
of power functions, trigonometric functions, exponential functions, logarithm,. . . or combinations
among themselves using the four algebraic operations. It happens that antiderivative of function
cos z
z3

is not an elementary function. It is more possible (and practical) to compute the integral nu-
merically than analytically. We see that f(z) is holomorphic on C\{0}. Thus, it possesses Laurent
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series about 0. We decompose the function f(z) as

f(z) = z−3 cos z = z−3
(

1− z2

2!
+
z4

4!
− z6

6!
+ . . .

)
=
∞∑
k=0

(−1)k
z2k−3

(2k)!
.

Since γ lies in C\{0}, one can integrate the series term by term:∫
γ
f(z)dz =

∞∑
k=0

(−1)k

(2k)!

∫
γ
z2k−3dz.

If k 6= 1 then 2k − 3 6= −1 and∫
γ
z2k−3dz =

z2k−2

2k − 2

∣∣∣∣−3i
i

=
(−3i)2k−2 − i2k−2

2k − 2
.

If k = 1 then 2k− 3 = −1. We see that γ does not intersect the negative real line. One can choose
the principal logarithm as an antiderivative of z−1.∫

γ
z−1dz = Log z

∣∣∣∣−3i
i

= Log(−3i)− Log i = ln 3− iπ.

Now we combine the cases k = 0, k = 1 and k ≥ 2 together:∫
γ
f(z)dz =

∫
γ
z−3dz − 1

2

∫
γ
z−1dz +

∞∑
k=2

(−1)k

(2k)!

∫
γ
z2k−3dz

=
z−2

−2

∣∣∣∣−3i
i︸ ︷︷ ︸

=−4/9

−1

2
(ln 3− iπ) +

∞∑
k=2

(−1)k

(2k)!

(−3i)2k−2 − i2k−2

2k − 2

To compute numerically this series, one needs to truncate the series, say let k run from 2 to some
large number n instead of ∞. In Mathematica,

n = 50

-4/9 - 1/2*(Log[3] - I*Pi) + N[Sum[(-1)^k/Factorial[2*k]

*((-3*I)^(2*k - 2) - I^(2*k - 2))/(2*k - 2),

{k, 2, n}]]

We see that the integral is about −1.19144 + 1.5708i.
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