Some review problems for Midterm

1. Where are the following functions differentiable? Where are they holomorphic? Determine their derivatives at points where they are differentiable.
(a) $x^{2}+y^{2}+i 2 x y$
(c) $\frac{i x+1}{y}$
(b) $\bar{z}^{2}+z$
2. Find all real constants a and b such that $f(z)=(2 x-y)+i(a x+b y)$ is an entire function.
3. Determine and sketch the region of continuity of the following complex functions.
(a) $\frac{z+1}{z^{2}+1}$
(c) $\sqrt{i z-1}$
Hint: write $z=x+i y$
(b) $\frac{x+i y}{|z|-1}$
(d) $\sqrt{z+1}+\sqrt{2 z-i}$
4. Determine whether the following limits is a complex number, infinity or does not exist.
(a)

$$
\lim _{z \rightarrow i} \frac{z}{z+1}
$$

(d)

$$
\lim _{z \rightarrow \infty} \frac{z+i}{i z+1}
$$

(b)

$$
\lim _{z \rightarrow 0} \frac{|z|^{2}}{z}
$$

(e)

$$
\lim _{z \rightarrow \infty} \frac{1}{z-a}
$$

(c)

$$
\lim _{z \rightarrow \infty} z^{2}
$$

where a is a given complex number.
5. Let $f(z)=\frac{z^{2}}{|z|^{2}}$
(a) Find $\lim _{z \rightarrow 0} f(z)$ as $z \rightarrow 0$ along the line $y=x$.
(b) Find $\lim _{z \rightarrow 0} f(z)$ as $z \rightarrow 0$ along the line $y=2 x$.
(c) Find $\lim _{z \rightarrow 0} f(z)$ as $z \rightarrow 0$ along the parabola $y=x^{2}$.
(d) Does the limit $\lim _{z \rightarrow 0} f(z)$ exist?
6. Consider a triangle with vertices at $1,2+2 i, 3-i$ oriented clockwise.
(a) Draw the triangle and mark the orientation on its edges.
(b) Find a parametrization for each of its edges.
7. Write the following complex numbers in standard form.
(a) $e^{\frac{\pi}{3}-2 i}$
(c) $\log (-\sqrt{3}-i)$
(b) $\tan \left(\frac{\pi+2 i}{4}\right)$
(d) $(1+i)^{2-i}$
8. Solve for all complex numbers z such that
(a) $e^{z}=-\frac{i \pi}{3}$
(c) $z^{2}+(1+i) z+5 i=0$
(b) $\cos z=2$
(d) $z^{2}+\bar{z}^{2}=i$

Answer key

1. (a) f is differentiable at all points on the real axis, and nowhere else. It is not holomorphic at any point. On the real axis, $f^{\prime}(z)=f^{\prime}(x+0 i)=2 x$.
(b) f is differentiable at $z=0$, and nowhere else. It is not holomorphic at any point. $f^{\prime}(0)=1$.
(c) f is differentiable at $z=i$, and nowhere else. It is not holomorphic at any point. $f^{\prime}(i)=i$.
2. $a=1, b=2$
3. (a) $\mathbb{C} \backslash\{ \pm i\}$
(b) The interior and exterior of the circle centered at the origin with radius 1.
(c) $\mathbb{C} \backslash\{z: x=0, y \geq-1\}$
(d) $\mathbb{C} \backslash(\{z: x \leq-1, y=0\} \cup\{z: x \leq 0, y=1 / 2\})$
4. (a) $\frac{1}{2}+\frac{i}{2}$
(d) $-i$
(b) 0
(c) ∞
(e) 0
5. (a) i
(c) 1
(b) $-\frac{3}{5}+\frac{4}{5} i$
(d) No
6. Note that parametrization of a straight path from z_{1} to z_{2} is $z(t)=z_{1}+t\left(z_{2}-z_{1}\right), 0 \leq t \leq 1$.
7. One can double-check results with Mathematica, for example

$$
\text { ComplexExpand }\left[(1+I)^{\wedge}(2-I)\right]
$$

8. (a) $\ln \frac{\pi}{3}+i\left(-\frac{\pi}{2}+k 2 \pi\right)$
(c) $1-2 i,-2+i$
(b) $k 2 \pi-i \ln (2 \pm \sqrt{3})$
(d) No solutions

Formula provided on Midterm

$$
\begin{aligned}
& \log z=\ln |z|+i \arg z \\
& z^{a}=e^{a \log z} \quad(a \text { is non-integer }) \\
& \sin z=\frac{e^{i z}-e^{-i z}}{2 i} \\
& \cos z=\frac{e^{i z}+e^{-i z}}{2} \\
& \arcsin z=-i \log \left(i z+\sqrt{1-z^{2}}\right) \\
& \arccos z=-i \log \left(z+i \sqrt{1-z^{2}}\right) \\
& \arctan z=\frac{i}{2} \log \left(\frac{i+z}{i-z}\right)
\end{aligned}
$$

Cauchy-Riemann equations:

$$
\left\{\begin{array}{c}
\partial_{x} u=\partial_{y} v \\
\partial_{y} u=-\partial_{x} v
\end{array}\right.
$$

