Name	Student ID

- Read the instruction of each problem carefully.
- The exam has 6 pages. Circle your final results.
- To get full credit for a problem you must show your work. Answers not supported by valid arguments will get little or no credit.

Problem	Possible points	Earned points
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Some helpful formula:

$$
\log z=\ln |z|+i \arg z
$$

$z^{a}=e^{a \log z}(a$ is non-integer $)$
$\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$
$\cos z=\frac{e^{i z}+e^{-i z}}{2}$
$\sinh z=\frac{e^{z}-e^{-z}}{2}$
$\cosh z=\frac{e^{z}+e^{-z}}{2}$
$\arcsin z=-i \log \left(i z+\sqrt{1-z^{2}}\right)$
$\arccos z=-i \log \left(z+i \sqrt{1-z^{2}}\right)$

$$
\arctan z=\frac{i}{2} \log \left(\frac{i+z}{i-z}\right)
$$

Cauchy-Riemann equations:

$$
\left\{\begin{aligned}
\partial_{x} u & =\partial_{y} v \\
\partial_{y} u & =-\partial_{x} v
\end{aligned}\right.
$$

[This page is intentionally left blank]

Problem 1. Express the following numbers in complex standard form $a+i b$.
(a) (5 points)

$$
(-1)^{i}
$$

$$
\begin{aligned}
& (-1)^{i}=e^{i \log (-1)} \\
& \log (-1)=\ln |1|+i \operatorname{Arg}(-1)=0+i \pi=i \pi \\
& \leadsto(-1)^{i}=e^{i i \pi}=e^{-\pi}
\end{aligned}
$$

(b) (5 points)

$$
\begin{aligned}
&=\frac{e^{i\left(\frac{\pi}{2}+i\right)}-e^{-i\left(\frac{\pi}{2}+i\right)}}{2 i}=\frac{e^{-1+i \frac{\pi}{2}}-e^{1-i \frac{\pi}{2}}}{2 i} \\
&=\frac{e^{-1} \operatorname{cis}\left(\frac{\pi}{2}\right)-e \operatorname{cis}\left(-\frac{\pi}{2}\right)}{2 i} \\
&=\frac{e^{-1}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)-e \cos \left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right)}{2 i} \\
&= \frac{e^{-1}(0+i)-e(0-i)}{2 i} \\
&= \frac{e^{-1} i+e i}{2 i} \\
&= \frac{e^{-1}+e}{2}
\end{aligned}
$$

Problem 2. (10 points) Find all complex number z 's such that $\cos z=2$. Express the result in complex standard form.

$$
\begin{aligned}
z & =\arccos 2 \\
& =-i \log \left(2+i \sqrt{1-2^{2}}\right) \\
& =-i \log (2+i \Gamma-3)=-i \log (2 \pm i i \sqrt{3})=-i \log (2 \pm \sqrt{3})
\end{aligned}
$$

If plus sign is taken,

$$
\begin{aligned}
z & =-i[\ln (2+\sqrt{3})+i \arg (2+\sqrt{3})] \\
& =-i[\ln (2+\sqrt{3})+i k 2 \pi] \\
& =k 2 \pi-i \ln (2+\sqrt{3})
\end{aligned}
$$

If minus sign is taken,

$$
\begin{aligned}
z & =-i[\ln (2-\sqrt{3})+i \arg (2-\sqrt{3})] \\
& =-i[\ln (2-\sqrt{3})+i k 2 \pi] \\
& =k 2 \pi-i \ln (2-\sqrt{3})
\end{aligned}
$$

Conclusion:

$$
z=k 2 \pi-i \ln (2 \pm \sqrt{3})
$$

Problem 3. (10 points) Find all complex roots of the equation $z^{2}+(1-2 i) z-3-i=0$. Express the results in complex standard form.

$$
\begin{aligned}
\Delta=(1-2 i)^{2}-4(-3-i) & =1-4 i+4 i^{2}+12+4 i \\
& =9
\end{aligned}
$$

$$
\sqrt{\Delta}= \pm 3
$$

$$
z_{1,2}=\frac{-(1-2 i) \pm \sqrt{\Delta}}{2}=\frac{-1+2 i \pm 3}{2}
$$

$$
z_{1}=\frac{-1+2 i+3}{2}=1+i
$$

$$
z_{2}=\frac{-1+2 i-3}{2}=-2+i
$$

Problem 4. Put $z_{1}=-i$ and $z_{2}=2+i$.
(a) (3 points) Write the equation of the line segment from z_{1} to z_{2} in complex standard form $z(t)=$ $x(t)+i y(t)$. Call this path γ_{1}.

$$
z(t)=z_{1}+t\left(z_{2}-z_{1}\right)=-i+t(2+i-(-i))=-i+t(2+2 i)
$$

(b) (2 points) Verify that γ_{1} passes through point $z=1$.

I lug $t=\frac{1}{2}$ into the equation of γ_{1} above:

$$
z\left(\frac{1}{2}\right)=2 \cdot \frac{1}{2}+\left(2 \cdot \frac{1}{2}-1\right) i=1
$$

Thus, 1 lies on γ_{1}.
(c) (2 points) Verify that $z=1$ is the midpoint of γ_{1}.

$$
\begin{aligned}
& \left|1-z_{1}\right|=|1-(-i)|=|1+i|=\sqrt{i^{2}+1^{2}}=\sqrt{2} \\
& \left|1-z_{2}\right|=|1-(2+i)|=\left|-|-i|=\sqrt{\left.\right|^{2}+\left.\right|^{2}}=\sqrt{2}\right.
\end{aligned}
$$

Thus, 1 is the midpoint of γ_{1}.
(d) (3 points) Let γ_{2} be the upper half of the circle centered at 1 passing through z_{1}. It starts at z_{2} and ends at z_{1}. Write the equation for γ_{2} in complex standard form.

The radius of the circle is $\left|1-z_{1}\right|=\sqrt{2}$.

$$
\text { Equation of } \begin{aligned}
\gamma_{2}: & z(t)=1+\sqrt{2} e^{i t} \\
= & 1+\sqrt{2} \cos t+i \sqrt{2} \sin t
\end{aligned}
$$

The range of t is $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$.

Problem 5. Consider $f(z)=\frac{\sin z}{z}$.
(a) (2 points) Express $f(z)$ in complex standard form $f=u+i v$ when z lies on the real axis.

$$
\begin{aligned}
& z=x \\
& f(z)=\frac{\sin x}{x}
\end{aligned}
$$

(b) (2 points) Find the limit of $f(z)$ as $z \rightarrow \infty$ along the x-axis toward the positive direction.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} u(x, y)= \lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 \\
& \text { because } 0 \leq\left|\frac{\sin x}{x}\right|=\frac{|\sin x|}{|x|} \leq \frac{1}{|x|} \rightarrow 0 \\
& \lim _{x \rightarrow \infty} v(x, y)=0 . \text { Therefore, } f(z) \rightarrow 0+i 0=0 \text { as } z \rightarrow \infty \text { along } x-a x i s .
\end{aligned}
$$

(c) (2 points) Express $f(z)$ in complex standard form $f=u+i v$ when z lies on the imaginary axis.

$$
\begin{gathered}
z=i y \\
f(z)=\frac{\frac{\sin i y}{i y}=\frac{\frac{e^{i i y}-e^{-i i y}}{2 i}}{i y}=\frac{e^{-y}-e^{y}}{2 i^{2} y}=\frac{e^{y}-e^{-y}}{2 y}}{u(x, y)=\frac{e^{y}-e^{-y}}{2 y}}=\begin{array}{l}
v(x, y)=0
\end{array}
\end{gathered}
$$

(d) (2 points) Find the limit of $f(z)$ as $z \rightarrow \infty$ along the y-axis toward the positive direction.

$$
\begin{array}{r}
\lim _{y \rightarrow \infty} u(x, y)=\lim _{y \rightarrow \infty} \frac{e^{y}-e^{-y}}{2 y}=\infty \quad \text { because the } e^{y} \text { grows } f \\
\text { and } e^{-y} \rightarrow 0 . \\
\lim _{y \rightarrow \infty} v(x, y)=0 . \quad \text { Thus, } f(z) \rightarrow \infty \text { as } z \rightarrow \infty \text { along } y \text {-axis. }
\end{array}
$$

(e) (2 points) Find $\lim _{z \rightarrow \infty} f(z)$.

Problem 6. (10 points) Where is the following function differentiable? Where is it holomorphic? Determine its derivative at points where it is differentiable.

$$
f(z)=x^{2} y+x+i\left(x y^{2}-x+y\right)
$$

$$
\begin{gathered}
u(x, y)=x^{2} y+x \\
v(x, y)=x y^{2}-x+y \\
\partial_{x} u=2 x y+1, \quad \partial_{x} v=y^{2}-1 \\
\partial_{y} u=x^{2}, \quad \partial_{y} v=2 x y+1
\end{gathered}
$$

These are continuous everywhere.

Canchy-Riemann equations

$$
\left\{\begin{array}{l}
2 y+1=2 x y+1 \\
x^{2}=-\left(y^{2}-1\right)
\end{array} \quad \leadsto x^{2}+y^{2}=1 .\right.
$$

The function $f(t)$ is differentiable at every pointon the unit circle, and nowhere else. It is not holomorphic anywhere.

On the wit circle,

$$
f^{\prime}(z)=o_{x} u+i \partial_{x} v=2 x y+1+i\left(y^{2}-1\right)
$$

