
Discontinuity and Angles

In this note, we will use Mathematica to

• Visualize discontinuous behavior of complex functions along a curve.

• Visualize the angle between two curves.

1 Discontinuous functions

Let us consider the function f(z) = Log(z2 + 1). From the Mathematica practice last time, we
know that f is continuous everywhere excepts for points on the line x = 0, y ≥ 1 and the line
x = 0, y ≤ −1. We want to see how f(z) jumps as z crosses the imaginary axis (Figure 1). Let us

Figure 1

consider the line y = 2, which has complex form z = t+ 2i. This line to mapped to some curve by
f , which we call an image curve. We expect that when t moves from −2 to 2, the image curve is
drawn out continuously, except at t = 0. At t = 0, the function f(z) = ln |z2 + 1| + iArg(z2 + 1)
jumps by 2πi. This is a jump of distance 2π on the vertical direction. In Mathematica (Figure 2),

f[z_] := Log[z^2 + 1]

p[s_] := ParametricPlot[ReIm[t+2*I],{t,-2,s},PlotRange -> {{-2,2},{0,4}}]

q[s_] := ParametricPlot[ReIm[f[t+2*I]],{t,-2,s},PlotRange -> {{0,2.5},{-3,3}}]

Manipulate[{p[s],q[s]},{s,-1.9,2}]

Figure 2

Note that there is no mystery about the numbers −2, 2, 0, 4, 2.5, −3, 3 which we put in PlotRange.
One should omit option PlotRange from the above commands at the first time of running. This
will cause the frame of the plot to vary as one varies s. Once we know the maximum range of the
plot, we can specify the PlotRange to fix the frame of the plot.
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2 Visualize angles between two curves

Put z0 = 1 + i. There are infinitely many curves on the complex plane that pass through z0. To
make vivid our experiment, let us consider two families of curves that pass through z0.

σs(t) = z0 + eis(1− eit)
λs(t) = z0 + t(s+ i cos t).

For each value of s, the curve σs and λs pass through z0 when t = 0. One can plot both curves
together on the complex plane as follows (Figure 3).

z0 = 1+I

sigma[s_,t_] := z0 + Exp[I*s]*(1-Exp[I*t])

lambda[s_,t_] := z0 + t*(s+I*Cos[t])

p[s_] := ParametricPlot[{ReIm[sigma[s,t]], ReIm[lambda[s,t]]},

{t,-2,2}, PlotRange -> {{0,2.5},{0,2}}, PlotLegends -> Automatic]

Manipulate[p[s],{s,-1,1}]

Figure 3

Note that the option PlotLegends is for us to distinguish the curves more easily. The blue curve
corresponds to the first function (which is σs) and the orange curve corresponds to the second
function (which is λs).

Now let us draw the velocity vectors on σs at λs at z0. That is to draw vectors σ′s(0) and
λ′s(0) from the point z0. The option Epilog → {. . . } allows us to annotate the graph. We
want to draw two arrows, namely σ′s(0) and λ′s(0), at point z0. In Mathematica, the command
Arrow[{{a,b},{c,d}}] draws an arrow from point (a, b) to point (c, d). One can compute

σ′s(0) = eis(−i)
λ′s(0) = s+ i.

Thus, the first arrow σ′s(0) can be drawn by the command

Arrow[{{1,1}, {1,1} + ReIm[Exp[I*s]*(-I)]}]

The second arrow can be drawn by the command

Arrow[{{1,1}, {1,1} + ReIm[s+I]}]

Don’t execute those commands yet. We put these two commands inside the curly brackets (sepa-
rated by comma) of the Epilog→{. . . } command as follows (Figure 4).

2



p[s_] := ParametricPlot[{ReIm[sigma[s,t]], ReIm[lambda[s,t]]},

{t,-2,2}, PlotRange -> {{0,2.5},{0,2}}, PlotLegends -> Automatic,

Epilog -> {Arrow[{{1,1}, {1,1} + ReIm[Exp[I*s]*(-I)]}],

Arrow[{{1,1}, {1,1} + ReIm[s+I]}]}]

Manipulate[p[s],{s,-1,1}]

Figure 4

The angle between the two curves at the intersection point z0 is defined as the angle between these
two velocity vectors. To compute the angle between two curves σs and λs, for example when s = −1
(see Figure 5), we first compute the argument of each velocity vector:

θ1 = Arg(σ′s(0)) = Arg(eis(−i)) = Arg(e−i(−i))
θ2 = Arg(λ′s(0)) = Arg(s+ i) = Arg(−1 + i).

Then the angle between the two velocity vectors (sweeping from σ′s(0) to λ′s(0)) is θ = θ2 − θ1 (in
modulo 2π). In Mathematica,

theta1 = Arg[Exp[-I]*(-I)]

theta2 = Arg[-1+I]

theta = theta2 - theta1

Figure 5

Consider the function

f(z) =
iz

z − 3
.

We want to see the angle between the image of the curve σs and the image of the curve λs under
f . The image of the curve σs under f is Σs(t) = f(σs(t)). The image of the curve λs under f is
Λs(t) = f(λs(t)). The image of z0 under f is w0 = f(z0). In Mathematica,
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f[z_] := I*z/(z-3)

w0 = f[z0]

The velocity of Σs at w0 is Σ′s(0). The velocity of Λs at w0 is Λ′s(0). In Mathematica, one can
compute these velocity vectors by

Sigma[s_,t_] := f[sigma[s,t]]

Lambda[s_,t_] := f[lambda[s,t]]

v1[s_] := D[Sigma[s,t],t] /. t -> 0

v2[s_] := D[Lambda[s,t],t] /. t -> 0

Here the operator /. is the substitution operator. The third of the above commands means that
the velocity vector v1(s) is obtained by first taking the derivative of Σ(s, t) with respect to t and
then substituting t by 0.

Because f is holomorphic at z0 and

f ′(z0) =
−3i

(z − 3)2

∣∣∣∣
z=z0

=
−3i

(i− 2)2
6= 0,

we know that f is angle-preserving (conformal) at z0. In Mathematica,

p[s_] := ParametricPlot[{ReIm[sigma[s,t]], ReIm[lambda[s,t]]},

{t,-2,2}, PlotRange -> {{0,2.5},{0,2}},

Epilog -> {Arrow[{ReIm[z0], ReIm[z0] + ReIm[Exp[I*s]*(-I)]}],

Arrow[{ReIm[z0], ReIm[z0] + ReIm[s+I]}]}]

q[s_] := ParametricPlot[{ReIm[Sigma[s,t]], ReIm[Lambda[s,t]]},

{t,-2,2}, PlotRange -> {{0,3},{-2,2}},

Epilog -> {Arrow[{ReIm[w0], ReIm[w0] + ReIm[v1[s]]}],

Arrow[{ReIm[w0], ReIm[w0] + ReIm[v2[s]]}]}]

Manipulate[{p[s],q[s]},{s,-1,1}]

Figure 6

We can see from the picture that the angle between the image curves Σs and Λs is the same as the
angle between the original curves σs and λs.
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