Some review problems for Final Exam

1. Compute the following limits. Distinguish between the case the limit is equal to ∞ and the case the limit does not exist.
(a)

$$
\lim _{z \rightarrow 0} \frac{\sin z-z}{z^{3}}
$$

(b)

$$
\lim _{z \rightarrow-1+i} \frac{z+1-i}{z\left(z^{2}+2 z+2\right)}
$$

(c)

$$
\lim _{z \rightarrow i} \frac{e^{\pi z}+1}{z-i}
$$

(d)

$$
\lim _{z \rightarrow 0} e^{i \operatorname{Arg}\left(z^{4}\right)}
$$

(e)

$$
\lim _{z \rightarrow \infty} \frac{\log z}{z}
$$

2. To each of the following functions, determine the region where it it continuous/ differentiable/ holomorphic. Find the derivative at $z=1+i$ if the function is differentiable at $i+1$.
(a) $f(z)=\log \left(\frac{z+1}{z-1}\right)$
(b) $f(z)=\log \left(i z^{2}\right)$
(c) $f(z)=e^{i x} e^{i y}$
3. Evaluate the complex integrals $\int_{\gamma} f(z)$ where f and γ are given as follows. Clearly mention the method/theorem you use.
(a) $f(z)=x^{2}+i y$ and γ is the part of the curve $x=\sqrt{y}$ from $y=4$ to $y=1$.
(b) $f(z)=\frac{1}{z^{4}+z^{2}+1}$ and γ is the rectangle with vertices at $(1,0),(1,1),(-1,1),(-1,0)$ oriented in that order.
(c) $f(z)=z \log \left(z^{2}+1\right)$ and $\gamma(t)=\frac{1}{2} e^{-i t}$ where $t \in[0, \pi]$.
