Guessing region of continuity and visualizing multivalued functions

In this note, we will use Mathematica to

- Guess the region of continuity of a (single-valued) complex function.
- Visualize a multivalued function.

1 Guess the region of continuity

Let us consider the function $f(z)=\log \left(z^{2}+1\right)$. We want to know the region of z where f is continuous. By the definition of the principal logarithm,

$$
f(z)=\ln \left|z^{2}+1\right|+i \operatorname{Arg}\left(z^{2}+1\right) .
$$

The real part of $f(z)$ is $u(z)=\ln \left|z^{2}+1\right|$. The imaginary of $f(z)$ is $v(z)=\operatorname{Arg}\left(z^{2}+1\right)$. For f to be continuous at z, both u and v have to be continuous at z. Intuitively, one can view function u as a real-valued function of two real variables

$$
u(x, y)=\ln \left|(x+i y)^{2}+1\right|=\ln \left|x^{2}-y^{2}+1+i 2 x y\right|=\ln \sqrt{\left(x^{2}-y^{2}+1\right)^{2}+(2 x y)^{2}} .
$$

One can similarly view v as a real-valued function of two real variables. We can define u and v concisely in Mathematica by:

```
f[z_] := Log[z^2 + 1]
u[\mp@subsup{z}{-}{\prime}]:= Re[f[z]]
v[z_] := Im[f[z]]
```

One can draw the graphs of u by (Figure 1)

```
Plot3D[u[x + I*y], {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic]
```


(a) Looking from an angle

(b) Looking from above

Figure 1: Graph of u
From the picture, we can guess that u is continuous everywhere except at two points $x=0, y=1$ and $x=0, y=-1$. The graph of u at each of these two points look like an infinite well, indicating
that the limit of u is equal to ∞ at these points. One may also notice two slits on the graph. They are insignificant because u does not behave abnormally (discontinuously) across each slit.

One can draw the graphs of v by (Figure 2)
Plot3D[v[x + I*y], \{x, -2, 2\}, \{y, -2, 2\}, AxesLabel \rightarrow Automatic]

(a) Looking from an angle

(b) Looking from above

Figure 2: Graph of v
From the picture, we can guess that v is continuous everywhere except on two lines $x=0, y \geq 1$ and $x=0, y \leq-1$. The values of $v(z)$ jump across these lines. From here, we can guess that the function $f(z)=u(z)+i v(z)$ is continuous everywhere except on the line $x=0, y \geq 1$ and the line $x=0, y \leq-1$. An analytic justification is needed to confirm this observation. However, we skip this step here.

2 Visualize multivalued functions

Let us consider $g(z)=\log \left(z^{2}+1\right)$. By the definition of logarithm,

$$
g(z)=\ln \left|z^{2}+1\right|+i \arg \left(z^{2}+1\right) .
$$

This is a multivalued function because arg is a multivalued function. The real part of $g(z)$ is $u(z)=\ln \left|z^{2}+1\right|$, which is a single-valued function. We plotted the graph of u above. The imaginary part of $g(z)$ is

$$
w(z)=\arg \left(z^{2}+1\right)=\operatorname{Arg}\left(z^{2}+1\right)+k 2 \pi=v(z)+k 2 \pi,
$$

which is a multivalued function.
If $k=0$ then $w(z)=v(z)$, whose graph is given in Figure 2. This is one "branch" of $w(z)$. Other branches are obtained by choosing different integer values of k. For each k, one can draw the graph of $v(z)+k 2 \pi$. The combination of all of these branches gives a full picture of $w(z)$. In other words, the "graph" of the multivalued function $w(z)$ is a concatenation of copies of the graph of $v(z)$. Each copy is a vertical shift by a multiple of 2π of the graph of $v(z)$. In Mathematica,

```
p[k_] := Plot3D[v[x+I*y] + k*2*Pi, {x, -2, 2}, {y, -2, 2}]
Show[p[0], p[1], PlotRange -> All]
```

Figure 3 shows two branches of function $w(z)$. To see three branches, one can write (Figure 4)

```
Show[p[0], p[1], p[2], PlotRange -> All]
```


Figure 3: Two branches of multivalued function $w(z)$

Figure 4: Three branches of multivalued function $w(z)$

The lines where v is discontinuous are the places where a new branch is glued to. The concatenation of all of the branches forms a surface (smooth everywhere) that looks like a parking deck. This is an example of Riemann surface.

