MTH 483/583 Complex Variables - Homework 1

Solution Key

Spring 2020

Exercise 1. Write the following complex numbers in standard form $a+i b$.
(a) $(1+2 i)(2-i)+(1+i)^{2}=2-i+4 i-(2 i)(i)+\left(1+2 i+i^{2}\right)=4+5 i$.
(b) $(2-i)^{4}=(2-i)^{2}(2-i)^{2}=(3-4 i)(3-4 i)=-7-24 i$.
(c) $\frac{2+4 i}{1+i}+(1+2 i)^{2} i^{5}=\frac{(2+4 i)(1-i)}{(1+i)(1-i)}+(-3+4 i) i=\frac{6+2 i}{2}+(-3 i-4)=-1-2 i$.
(d) $\frac{|-1-2 i|}{3+i \sqrt{2}}=\frac{\sqrt{5}(3-i \sqrt{2})}{(3+i \sqrt{2})(3-i \sqrt{2})}=\frac{3 \sqrt{5}}{11}-\frac{\sqrt{10}}{11} i$.

Exercise 2. Write the following complex numbers in polar form $r e^{i \theta}$.
We use conventional principle argument $[-\pi, \pi)$ in this question.
(a) $\frac{1}{1+i}+\frac{1}{-1+i}=\frac{(-1+i)+(1+i)}{(1+i)(-1+i)}=-i=e^{-i \frac{\pi}{2}}$.
(b) $-2+i \sqrt{12}=4\left(\frac{-2}{4}+i \frac{\sqrt{12}}{4}\right)=4 e^{i \theta}$, where $\theta=\pi+\arctan \left(-\frac{\sqrt{12}}{2}\right)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
(c) Third roots of $1+i \sqrt{3}$:

Step 1: $1+i \sqrt{3}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=2 e^{i \pi / 3}$,
Step 2: $\sqrt[3]{1+i \sqrt{3}}=2^{1 / 3} e^{i(\pi / 9+2 k \pi / 3)}, \quad k=0,1,2$
Answer: $2^{\frac{1}{3}} e^{i\left(\frac{\pi}{9}+\frac{2 k \pi}{3}\right)}, \quad k=0,1,2$
(d) Fourth roots of $\frac{1}{2}-\frac{\sqrt{3}}{2} i$:

Step 1: $\frac{1}{2}-\frac{\sqrt{3}}{2} i=e^{-i \frac{\pi}{3}}$
Step 2: $\sqrt[4]{\frac{1}{2}-\frac{\sqrt{3}}{2} i}=e^{i\left(-\frac{\pi}{12}+\frac{k \pi}{2}\right)}, \quad k=0,1,2,3$
Answer: $e^{i\left(-\frac{\pi}{12}+\frac{k \pi}{2}\right)}, \quad k=0,1,2,3$

Exercise 3. Find all $z \in \mathbb{C}$ that satisfy the following equation.
(a) $|z|-2 z=i$:

Set $z=a+i b$:
$\Rightarrow \sqrt{a^{2}+b^{2}}-(2 a+2 i b)=i$ or $\quad\left(\sqrt{a^{2}+b^{2}}-2 a\right)-i(2 b)=i$
so,
$\sqrt{a^{2}+b^{2}}-2 a=0$ and $-2 b=1$
$\Rightarrow a=\frac{1}{\sqrt{12}}, b=\frac{-1}{2}$
$\therefore z=\frac{1}{\sqrt{12}}-\frac{i}{2}$
(b) $z^{2} \bar{z}=z$:

Since $z^{2} \bar{z}=z(z \bar{z})=z|z|^{2}$ and $|z|^{2} \in \mathbb{R} \Longrightarrow|z|^{2} z=z$,
so either $z=0$ or $|z|=1$. In conclusion, the set of solutions consists of 0 and all the complex numbers on the unit circle.
(c) $z^{2}+(1+2 i) z+i-7=0$:

Use quadratic formula:

$z=\frac{-(1+2 i) \pm \sqrt{(1+2 i)^{2}-4(i-7)}}{2}$
$\therefore z=-3-i, 2-i$
(d) $z^{6}+z^{3}+1=0$:

Step 1: Let $u=z^{3}$. Then use quadratic formula on the equation $u^{2}+u+1=0$, we obtain

$$
u=\frac{-1 \pm \sqrt{3} i}{2}
$$

or

$$
u=e^{\frac{2 i \pi}{3}}, u=e^{\frac{-2 i \pi}{3}}
$$

Step 2: solve the equation $z^{3}=e^{\frac{2 i \pi}{3}}$:
$z=e^{i\left(\frac{2 \pi}{9}+\frac{2 k \pi}{3}\right)}, k=0,1,2$

Step 3: Similarly, solve the equation $z^{3}=e^{\frac{-2 i \pi}{3}}$:
$z=e^{i\left(\frac{2 \pi}{9}+\frac{2 k \pi}{3}\right)}, k=0,1,2$
(e) $z^{3}+(2-i) z^{2}+(2-2 i) z-2 i=0$:

We know from the hint that $z=i$ is one of the roots. Factor the equation using long division:

$$
0=z^{3}+(2-i) z^{2}+(2-2 i) z-2 i=(z-i)\left(z^{2}+2 z+2\right)
$$

and

$$
z^{2}+2 z+2=0 \longrightarrow z=-1 \pm i
$$

Therefore, $z=i,-1-i,--1+i$.

Exercise 4. Sketch the following sets on the complex plane. You can either sketch by hand or use Mathematica to plot.

We set $z=x+i y$ in the following.
(a) $\operatorname{Re}\left(z^{2}\right)>0$:

Note that $\operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2}$, therefore we want the region:

$$
x^{2}-y^{2}>0
$$

in the complex plane.

(b) $0<|z-1|<2$:

$$
0<|z-1|=\sqrt{(x-1)^{2}+y^{2}}<2
$$

(c) $|z|<|z-4|$:

Notice that this is equivalent to $|z-0|<|z-4|$, namely, all the complex numbers z such that the distance between z and the origin 0 is strictly less than the distance between z and 4 , which consists of all the points on the left of the vertical line $x=2$:

(d) $|z+1|>|z|$ and $1<|z|<2$:

```
\operatorname{ln}[14]:= RegionPlot[Sqrt[(x+1)^^2+\mp@subsup{y}{}{\wedge}2]>\operatorname{Sqrt[x^}2+\mp@subsup{y}{}{\wedge}2] && 1<Sqrt[ [x^2+ (y^2]<2,
```


(e) $\operatorname{Re}(z)>\operatorname{Im}(z)$ and $|z-1|<1$:

This is the intersection of the half-plane $x>y$ (or the region below the line $y=x$) and the region inside the unit circle centered at $(1,0)$:

```
\operatorname{ln}[10]:= RegionPlot [x>y && Sqrt[ [(x-1)^2 + y^2]< 1, {x, -0.5, 2.5},
    {y, -1.5, 1.5}]
```


