MTH 483/583 Complex Variables - Homework 2

Solution Key

Spring 2020

Exercise 1. Find all complex roots of the following cubic equation. Write them in standard form $z=a+i b$ where a and b are numerical values (round to 4 digits after decimal point).
(a) $z^{3}+3 z+1=0$

Answer: From the Cardano's formula (see also the lecture note for roots of cubic polynomial), we split z into the sum of $u, v: z=u+v$. Then note that

$$
\triangle=q^{2}+\frac{4 p^{3}}{27}=1+\frac{4}{27} 27=5
$$

and so

$$
u=\left[\frac{\sqrt{5}-1}{2}\right]^{1 / 3}
$$

The third roots of $\frac{\sqrt{5}-1}{2}$ are

$$
\Gamma_{1}:=\left\{\left(\frac{\sqrt{5}-1}{2}\right)^{1 / 3} e^{i\left(\frac{2 k \pi}{3}\right)}: k=0,1,2\right\}
$$

Similarly,

$$
v=\left[\frac{-\sqrt{5}-1}{2}\right]^{1 / 3}
$$

and the third roots of $\frac{-\sqrt{5}-1}{2}$ are

$$
\Gamma_{2}:=\left\{\left(\frac{\sqrt{5}+1}{2}\right)^{1 / 3} e^{i\left(\frac{-\pi+2 m \pi}{3}\right)}: m=0,1,2\right\}
$$

Let

$$
u_{1}=\left(\frac{\sqrt{5}-1}{2}\right)^{1 / 3}, u_{2}=\left(\frac{\sqrt{5}-1}{2}\right)^{1 / 3} e^{i \frac{2 \pi}{3}}, u_{3}=\left(\frac{\sqrt{5}-1}{2}\right)^{1 / 3} e^{i \frac{4 \pi}{3}}
$$

and

$$
v_{1}=\left(\frac{\sqrt{5}+1}{2}\right)^{1 / 3} e^{-i \frac{\pi}{3}}, v_{2}=\left(\frac{\sqrt{5}+1}{2}\right)^{1 / 3} e^{i \frac{\pi}{3}}, v_{3}=\left(\frac{\sqrt{5}+1}{2}\right)^{1 / 3} e^{i \pi}
$$

We choose the pairs of u and v such that $u v=-p / 3=-1$. A quick way to do this is to choose the pairs of u and v such that $\arg u+\arg v=\arg (-1)=\pi$ (in modulo 2π). These pairs are $\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)$. Therefore, the three complex roots of the given equation are

$$
\begin{gathered}
z_{1}=u_{1}+v_{3} \approx-0.3222 \\
z_{2}=u_{2}+v_{2} \approx 0.1611+i 1.7544 \\
z_{3}=u_{3}+v_{1} \approx 0.1611-i 1.7544
\end{gathered}
$$

You can double-check your results with Mathematica by the command NSolve:
NSolve[z^3 + 3*z + $1==0, z]$
(b) $2 z^{3}-6 z^{2}+2 z+1=0$

Answer: Set $a=2, b=-6, c=2, d=1$.
Divide by the leading coefficient:

$$
\begin{equation*}
z^{3}-3 z^{2}+z+\frac{1}{2}=0 \tag{1}
\end{equation*}
$$

and then use the change of variables: $x:=z+\frac{b}{3 a}=z-1$, or equivalently, $z=x+1$. Substitute this into the equation (1):

$$
(x+1)^{3}-3(x+1)^{2}+(x+1)+\frac{1}{2}=0
$$

multiply them out and simplify to obtain

$$
x^{3}-2 x-\frac{1}{2}=0
$$

Use the same argument as we did in part (a), we find that

$$
\triangle=-\frac{101}{108}=\frac{101}{108} i^{2} \Longrightarrow \sqrt{\triangle}= \pm \sqrt{\frac{101}{108}} i
$$

so

$$
u=\left(\frac{1}{4}+i \sqrt{\frac{101}{432}}\right)^{1 / 3}, \quad v=\left(\frac{1}{4}-i \sqrt{\frac{101}{432}}\right)^{1 / 3}
$$

we get

$$
u_{k}=\left(\frac{2 \sqrt{6}}{9}\right)^{1 / 3} e^{i\left(\theta_{1}+2 k \pi\right) / 3}, \quad k=0,1,2
$$

where $\theta_{1}=\arctan (\sqrt{101 / 27})$

$$
v_{k}=\left(\frac{2 \sqrt{6}}{9}\right)^{1 / 3} e^{i\left(\theta_{2}+2 k \pi\right) / 3}, \quad k=0,1,2
$$

where $\theta_{2}=\arctan (-\sqrt{101 / 27})=-\theta_{1}$.
We choose the pairs of u and v such that $u v=-p / 3=2 / 3$. A quick way to do this is to choose the pairs of u and v such that $\arg u+\arg v=\arg (2 / 3)=0$ (in modulo 2π). These pairs are $\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)$. Therefore, the three complex roots of the given equation are $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)$. Therefore, the three values of x are

$$
\begin{aligned}
& x_{1}=u_{1}+v_{1} \approx 1.5257 \\
& x_{2}=u_{2}+v_{2} \approx-1.2670 \\
& x_{3}=u_{3}+v_{3} \approx-0.2587
\end{aligned}
$$

Therefore, the three roots of the given equation are

$$
\begin{aligned}
& z_{1}=u_{1}+v_{1} \approx 2.5257 \\
& z_{2}=u_{2}+v_{2} \approx-0.2670 \\
& z_{3}=u_{3}+v_{3} \approx 0.7413
\end{aligned}
$$

Exercise 2. Express the following complex numbers in either standard form or polar form.
(a) $e^{e^{1+2 i}}=e^{e(\cos (2)+i \sin (2))}=e^{e \cos (2)} e^{i e \sin (2)}=e^{e \cos (2)} \cos (e \sin (2))+i e^{e \cos (2)} \sin (e \sin (2))$.
(b) $e^{|2-i|}=e^{\sqrt{5}}$.
(c) $\sin (-1+i)=\frac{e^{i(-1+i)}-e^{-i(-1+i)}}{2 i}=\frac{e^{-1} e^{-i}-e e^{i}}{2 i}=\frac{e^{-1}(\cos 1-i \sin 1)-e(\cos 1+i \sin 1)}{2 i}$
$=\frac{\left(e^{-1}-e\right) \cos 1+i\left(-e^{-1}-e\right) \sin 1}{2 i}=\frac{-\left(e+e^{-1}\right) \sin 1}{2}+i \frac{\left(e-e^{-1}\right) \cos 1}{2}$
(d) $\tan (i)=\frac{e^{i(i)}-e^{-i(i)}}{i\left(e^{i(i)}+e^{-i(i)}\right)}=\left(\frac{e-e^{-1}}{e+e^{-1}}\right) i$

Exercise 3. Recall de Moivre's formula:

$$
(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x)
$$

for any real number x and integer number n. Apply this formula to express $\cos (5 x)$ and $\sin (5 x)$ in terms of $\cos x$ and $\sin x$

Proof. Note that

$$
\begin{gather*}
(\cos x-i \sin x)^{5}=(\cos (-x)+i \sin (-x))^{5}=\cos (-5 x)+i \sin (-5 x) \\
=\cos (5 x)-i \sin (5 x) \tag{2}
\end{gather*}
$$

On the other hand, de Moivre's formula gives us:

$$
\begin{equation*}
(\cos x+i \sin x)^{5}=\cos (5 x)+i \sin (5 x) \tag{3}
\end{equation*}
$$

Combine (3) and (3), we have

$$
\cos (5 x)=\frac{(\cos x+i \sin x)^{5}+(\cos x-i \sin x)^{5}}{2}
$$

and

$$
\sin (5 x)=\frac{(\cos x+i \sin x)^{5}-(\cos x-i \sin x)^{5}}{2 i}
$$

Exercise 4. Recall that the sine and cosine functions are defined in terms of the exponential function. Use the identity $e^{u+v}=e^{u} e^{v}$ for any $u, v \in \mathbb{C}$ to prove the following identity:

$$
\sin (z+w)=\sin z \cos w+\cos z \sin w \quad \forall z, w \in \mathbb{C}
$$

Proof. Recall that

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

So

$$
\begin{gathered}
\sin z \cos w+\cos z \sin w=\frac{e^{i z}-e^{-i z}}{2 i} \frac{e^{i w}+e^{-i w}}{2}+\frac{e^{i z}+e^{-i z}}{2} \frac{e^{i w}-e^{-i w}}{2 i} \\
=\frac{e^{i(z+w)}+e^{i(z-w)}-e^{-i(z-w)}-e^{-i(z+w)}+e^{i(z+w)}-e^{i(z-w)}+e^{-i(z-w)}-e^{-i(z+w)}}{4 i} \\
=\frac{2 e^{i(z+w)}-2 e^{-i(z+w)}}{4 i}=\frac{e^{i(z+w)}-e^{-i(z+w)}}{2 i}=\sin (z+w)
\end{gathered}
$$

Exercise 5. For $z, w \in \mathbb{C}$, show the following identities.
We let $z=a+i b$ and $w=c+i d$ in the following.
(a) $\overline{z+w}=\bar{z}+\bar{w}$:

Proof. Since $z+w=(a+c)+i(b+d)$
so,

$$
\overline{z+w}=(a+c)-i(b+d)=(a-i b)+(c-i d)=\bar{z}+\bar{w}
$$

(b) $\overline{z w}=\bar{z} \bar{w}$:

Proof. $z w=(a c-b d)+i(a d+b c) \Longrightarrow \overline{z w}=(a c-b d)-i(a d+b c)$
and so

$$
\bar{z} \bar{w}=(a-i b)(c-i d)=(a c-b d)-i(a d+b c)=\overline{z w}
$$

(c) $|z w|=|z||w|$:

Proof.

$$
\begin{aligned}
& \begin{array}{r}
|z w|=\sqrt{(a c-b d)^{2}+(a d+b c)^{2}}=\sqrt{\left(a^{2} c^{2}-2 a b c d+b^{2} d^{2}\right)+\left(a^{2} d^{2}+2 a b c d+b^{2} c^{2}\right)} \\
=\sqrt{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)} \\
=\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}} \\
\\
=|z||w|
\end{array} \\
& \text { (d) } \overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}} \text { where } w \neq 0
\end{aligned}
$$

Proof. Note that

$$
\frac{z}{w}=\frac{z \bar{w}}{w \bar{w}}=\frac{z \bar{w}}{|w|^{2}}
$$

so

$$
\overline{\left(\frac{z}{w}\right)}=\overline{\left(\frac{z \bar{w}}{|w|^{2}}\right)}=\frac{\bar{z} w}{|w|^{2}}=\frac{\bar{z}}{\bar{w}}
$$

(e) $\left|z^{n}\right|=|z|^{n}$:

Proof. Note that this identity holds if $z=0$.
Assume $z \neq 0$ and $z=r e^{i \theta}$ for some $r>0$ and $\theta \in[-\pi, \pi)$. Then

$$
\begin{aligned}
\left|z^{n}\right|=\left|\left(r e^{i \theta}\right)^{n}\right| & =\left|r^{n} e^{i n \theta}\right| \quad \text { (de Moivre's formula) } \\
& =r^{n}\left|e^{i n \theta}\right|=r^{n}=|z|^{n}
\end{aligned}
$$

Exercise 6. (a) Use Mathematica to plot the image of the line $y=-1$ under the function $f(z)=z^{2}$:

(b) Use Mathematica to plot the image of the unit circle $x^{2}+y^{2}=1$ under the function $f(z)=z^{2}$:

```
ln[5]:= f[z_] := z^2
In[0]:= ParametricPlot[ReIm[f[Cos[t] + Sin[t] * I]], {t, 0, 2* Pi}, AspectRatio }->\mathrm{ Automatic,
    AxesOrigin }->{0,0}
```


(c) Re-do part(a) and (b) for $f(z)=z^{3}$:

Image of the line $y=-1$ under z^{3} :

Image of the unit circle $x^{2}+y^{2}=1$ under z^{3} :
 AspectRatio \rightarrow Automatic, AxesOrigin $\rightarrow\{0,0\}]$

(d) Re-do part (a) and (b) for $f(z)=1 / z$:

Image of the line $y=-1$ under $1 / z$:

Image of the unit circle $x^{2}+y^{2}=1$ under $1 / z$:
$\ln [21]:=f\left[z_{-}\right]:=1 / z$
$\ln [22]:=\operatorname{ParametricPlot}[\operatorname{ReIm}[f[\operatorname{Cos}[t]+\operatorname{Sin}[t] \star I]],\{t, 0,2 \star \operatorname{Pi}\}$, AspectRatio \rightarrow Automatic, AxesOrigin $\rightarrow\{0,0\}]$

