# MTH 483/583 Complex Variables - Homework 4 

Solution Key

Spring 2020

Exercise 1. Find the following limits. Distinguish between the limit that is equal to $\infty$ and limit that does not exist. If the limit is a complex number, write your answers in either standard or polar form.
(a) $\lim _{z \rightarrow i+1} \frac{(z-i)(2 z+1)}{z+1}$

Answer: The function

$$
f(z)=\frac{(z-i)(2 z+1)}{z+1}
$$

is a rational function. It is continuous everywhere except at $i+1$. Therefore,

$$
\begin{aligned}
\lim _{z \rightarrow i+1} f(z)=f(i & +1)=\frac{(i+1-i)(2 i+3)}{i+2} \\
& =\frac{8}{5}+i \frac{1}{5}
\end{aligned}
$$

(b) $\lim _{z \rightarrow i} \frac{z^{2}+1}{(z-i)(z+1)}$

Answer:

$$
\begin{gathered}
\lim _{z \rightarrow i} \frac{z^{2}+1}{(z-i)(z+1)}=\lim _{z \rightarrow i} \frac{(z-i)(z+i)}{(z-i)(z+1)} \\
=\lim _{z \rightarrow i} \frac{z+i}{z+1}=\frac{2 i}{i+1} \\
=1+i
\end{gathered}
$$

(c) $\lim _{z \rightarrow-i} \frac{z^{3}-i}{(z+i)(z-1)}$

Answer: We see that the limit is currently in the indefinite form $\frac{0}{0}$. We can factor $(z+i)$ from $z^{3}-i$ by using long division: $z^{3}-i=(z+i)\left(z^{2}-i z-1\right)$. Thus,

$$
\begin{gathered}
\lim _{z \rightarrow-i} \frac{z^{3}-i}{(z+i)(z-1)}=\lim _{z \rightarrow-i} \frac{(z+i)\left(z^{2}-i z-1\right)}{(z+i)(z-1)} \\
=\lim _{z \rightarrow-i} \frac{z^{2}-i z-1}{z-1}=\frac{(-i)^{2}-i(-i)-1}{-1-i} \\
=\frac{3}{2}-i \frac{3}{2}
\end{gathered}
$$

(d) $\lim _{z \rightarrow e^{i \frac{\pi}{3}}} \frac{z}{z^{3}+1}$

Answer: Because $z$ approaches a nonzero number, namely, $e^{i \frac{\pi}{3}}$, and the denominator approaches

$$
\left(e^{i \frac{\pi}{3}}\right)^{3}+1=e^{i \pi}+1=-1+1=0
$$

the limit of the fraction is equal to $\infty$.
(e) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{(z-2 i)(z+1)}$

Answer:

$$
\lim _{z \rightarrow \infty} \frac{z^{2}+1}{(z-2 i)(z+1)}=\lim _{z \rightarrow \infty} \frac{1+\frac{1}{z^{2}}}{\left(1-\frac{2 i}{z}\right)\left(1+\frac{1}{z}\right)}=\frac{1+0}{(1-0)(1+0)}=1
$$

(f) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z+1}$

Answer:

$$
\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z+1}=\lim _{z \rightarrow \infty} \frac{1+\frac{1}{z^{2}}}{\frac{1}{z}+\frac{1}{z^{2}}}
$$

The numerator goes to 1 (a nonzero number) and the denominator goes to 0 . Hence, the limit is equal to $\infty$.
(g) $\lim _{z \rightarrow \infty} \frac{\bar{z}}{z}$

Answer: Let us analyse the problem as follows. Write $z=r e^{i \theta}$. Taking $z$ to $\infty$ is equivalent to taking $r$ to $\infty$. There is no constraint on the argument $\theta$ as $z \rightarrow \infty$. We have

$$
\frac{\bar{z}}{z}=\frac{r e^{-i \theta}}{r e^{i \theta}}=e^{-2 i \theta}
$$

This number is independent of $r$. If $z$ goes to infinity along the half-line where the argument is $\theta$ then the limit is equal to $e^{-2 i \theta}$. This limit is different when $\theta$ varies. Thus, the limit
does not exist. To make our reasoning more rigorous, let us consider two sequences: $z_{n}=n$ (tending to $\infty$ along the positive real axis) and $w_{n}=i n$ (tending to $\infty$ along the positive imaginary axis). We have

$$
f\left(z_{n}\right)=f(n)=\frac{n}{n}=1
$$

and

$$
f\left(w_{n}\right)=f(i n)=\frac{-i n}{i n}=-1
$$

We see that $\lim f\left(z_{n}\right)=1 \neq \lim f\left(w_{n}\right)=-1$.
(h) $\lim _{z \rightarrow \infty} e^{-1 / z^{2}}$

Answer: When $z \rightarrow \infty$, we have $\frac{1}{z^{2}} \rightarrow 0$. This is because

$$
\left|\frac{1}{z^{2}}-0\right|=\left|\frac{1}{z^{2}}\right|=\frac{1}{|z|^{2}} \rightarrow 0
$$

Because the exponential is a continuous function, we have

$$
\lim _{z \rightarrow \infty} e^{-1 / z^{2}}=e^{0}=1
$$

(i) $\lim _{z \rightarrow \infty} \sin z$

Answer: Let $z_{n}=2 n \pi+\frac{\pi}{2}$ and $w_{n}=2 n \pi+\frac{3 \pi}{2}$. Both sequences goes to infinity. However,

$$
\begin{gathered}
\sin \left(z_{n}\right)=1 \\
\sin \left(w_{n}\right)=-1
\end{gathered}
$$

Because the limits of $\sin z_{n}$ and of $\sin w_{n}$ are different, the limit $\lim _{z \rightarrow \infty} \sin z$ does not exist.
(j) $\lim _{z \rightarrow \infty} \frac{\sin z}{z}$

Answer: Let $z_{n}=(n+1 / 2) \pi$. Then

$$
\frac{\sin z_{n}}{z_{n}}=\frac{1}{z_{n}} \rightarrow 0
$$

because $z_{n} \rightarrow \infty$.
On the other hand, let $w_{n}=i n$. Then

$$
\frac{\sin w_{n}}{w_{n}}=\frac{e^{-n}-e^{n}}{-2 n} \rightarrow \frac{e^{n}-e^{-n}}{2 n}=\infty
$$

Therefore, the limit does not exist.

Exercise 2. (a) To get some visual insights about function $f$, let us plot the real part and imaginary part of $f$.

```
Plot3D[Re[Log[(x + I*y)^2 + 1]], {x, -2, 2}, {y, -2, 2},
    AxesLabel -> Automatic]
```



Graph of the real part of $\log \left(z^{2}+1\right)$
Plot3D[Im[Log[(x + I*y)~2 + 1] ], \{x, $-2,2\},\{y,-2,2\}$, AxesLabel -> Automatic]


$$
\text { Graph of the imaginary part of } \log \left(z^{2}+1\right)
$$

From the graphs, we observe that $f$ is discontinuous on the lines $z=t i$ with $t \leq-1$ or $t \geq 1$. Now let us make verify this guess. The principal logarithm is discontinuous on the negative real line $\mathbb{R}_{\leq 0}$. Thus, $f$ is continuous at any point $z$ where $z^{2}+1 \notin \mathbb{R}_{\leq 0}$. To find all $z$ such that $z^{2}+1 \in \mathbb{R}_{\leq 0}$, we write $z=x+i y$. Then

$$
z^{2}+1=\left(x^{2}-y^{2}+1\right)+i 2 x y
$$

For this number to be on $\mathbb{R}_{\leq 0}$, we need

$$
\left\{\begin{array}{c}
x^{2}-y^{2}+1 \leq 0 \\
2 x y=0
\end{array}\right.
$$

We get $x=0$ and $y^{2} \geq 1$. Hence, the set of all $z$ such that $z^{2}+1 \in \mathbb{R}_{\leq 0}$ is the lines $z=i y$ with $y \leq-1$ or $y \geq 1$. We will show that $f$ is indeed discontinuous at every point on these lines.


Discontinuity of $\log \left(z^{2}+1\right)$
When $z$ crosses the green line, $z^{2}+1$ crosses the red line, causing $\log \left(z^{2}+1\right)$ to jump by $2 \pi i$.
(b) To get some visual insights about function $f$, let us plot the real part and imaginary part of $f$.

```
Plot3D[Re[Log[(x + I*y)^2 + I]], {x, -2, 2}, {y, -2, 2},
```

    AxesLabel -> Automatic]
    

Graph of the real part of $\log \left(z^{2}+i\right)$
Plot3D[Im[Log[(x + I*y)~2 + I] ], \{x, $-2,2\},\{y,-2,2\}$, AxesLabel -> Automatic]


Graph of the imaginary part of $\log \left(z^{2}+i\right)$
From the graphs, we observe that $f$ is discontinuous on two curves. It is not clear yet what these curves are. Let us do further analysis. The principal logarithm is discontinuous on the negative real line $\mathbb{R}_{\leq 0}$. Thus, $f$ is continuous at any point $z$ where $z^{2}+i \notin \mathbb{R}_{\leq 0}$. To find all $z$ such that $z^{2}+i \in \mathbb{R}_{\leq 0}$, we write $z=x+i y$. Then

$$
z^{2}+i=\left(x^{2}-y^{2}\right)+i(2 x y+1) .
$$

For this number to be on $\mathbb{R}_{\leq 0}$, we need

$$
\left\{\begin{array}{l}
x^{2}-y^{2} \leq 0 \\
2 x y+1=0
\end{array}\right.
$$

We get $y=-1 /(2 x)$ and $x^{4} \leq 1 / 4$. Hence, the set of all $z$ such that $z^{2}+i \in \mathbb{R}_{\leq 0}$ is the hyperbola $y=-1 /(2 x)$ with $-1 / \sqrt{2} \leq x<0$ and $0<x \leq 1 / \sqrt{2}$. We will show that $f$ is indeed discontinuous at every point on these hyperbola.


When $z$ crosses the green curve, $z^{2}+i$ crosses the red line, causing $\log \left(z^{2}+i\right)$ to jump by $2 \pi i$.
(c) To get some visual insights about function $f$, let us plot the real part and imaginary part of $f$.
$\mathrm{f}\left[\mathrm{z}_{-}\right]:=\operatorname{Sqrt}[z-1] * \operatorname{Sqrt}[z+\mathrm{I}]$
Plot3D[Re[f[x + I*y]], \{x, $-2,2\},\{y,-2,2\}$, AxesLabel $->$ Automatic]


Graph of the real part of $\sqrt{z-1} \sqrt{z+i}$
Plot3D[Im[f[x + I*y]], \{x, $-2,2\},\{y,-2,2\}$, AxesLabel $->$ Automatic $]$


Graph of the imaginary part of $\sqrt{z-1} \sqrt{z+i}$
From the graphs, we observe that $f$ is discontinuous on two straight lines. Let us do further analysis to determine these lines. The principal logarithm is discontinuous on the negative real line $\mathbb{R}_{\leq 0}$. Thus, $f$ is continuous at any point $z$ where $z-1 \notin \mathbb{R}_{\leq 0}$ and $z+i \notin \mathbb{R}_{\leq 0}$. To find all $z$ such that $z-1 \in \mathbb{R}_{\leq 0}$, we write $z-1=t \in \mathbb{R}_{\leq 0}$. Then $z=t+1 \in \mathbb{R}_{\leq 1}$. This is the first line. To find all $z$ such that $z+i \in \mathbb{R}_{\leq 0}$, we write $z+i=t \in \mathbb{R}_{\leq 0}$. Then $z=t-i$. The set of all points $t-i$ where $t \in \mathbb{R}_{\leq 0}$ is the line $x \leq 0, y=-1$. This is the second line.

We will show that $f$ is indeed discontinuous at every point on these lines.


Discontinuity of $\sqrt{z-1} \sqrt{z+i}$
When $z$ crosses the curve $x \leq 1, y=0$, the function $\sqrt{z-1}$ suddenly changes sign (because it is scaled by factor $e^{i \pi}=-1$ ) but the function $\sqrt{z+i}$ varies continuously and is nonzero. The product $\sqrt{z-1} \sqrt{z}+i$ therefore switches its sign suddenly (and is nonzero). Thus, it is discontinuous at every point on the curve $x \leq 1, y=0$. One can use similar reasoning for the curve $x \leq 0, y=-1$.
(d)

$$
f(z)=\left(z^{2}+1\right)^{i}=e^{i \log \left(z^{2}+1\right)}
$$

This is a composite function. At points $z$ where $\log \left(z^{2}+1\right)$ is continuous, $f$ is also continuous. We only need to check the continuity of $f$ at the points where $\log \left(z^{2}+1\right)$ is discontinuous. According to Part (a), these are points lying on the lines $x=0, y \geq 1$ and $x=0, y \leq-1$. When $z$ cross each line, $\log \left(z^{2}+1\right)$ jumps by $2 \pi i$. Then $\frac{1}{2} \log \left(z^{2}+1\right)$ jumps by $\pi i$. Hence, $e^{i \log \left(z^{2}+1\right)}$ is scaled by $e^{\pi i i}=e^{-\pi}$. That is, $f(z)$ is suddenly scaled by factor $e^{-\pi}$ when $z$ crosses the line $x=0, y \geq 1$ or the line $x=0, y \leq-1$. In conclusion, the region of continuity of $f$ is

$$
\mathbb{C} \backslash\{z=x+i y: x=0, y \leq-1 \text { or } y \geq 1\} .
$$

Exercise 3. Let $f(z)=\sqrt[3]{z}$ with the principal logarithm being used.
(a) Plot the real and imaginary part of $f(z)$.

Answer: Notice that

$$
\sqrt[3]{z}=e^{\frac{1}{3} \log (z)}
$$

```
\operatorname{ln}[1]:= f[z_]:= Exp[\operatorname{Log}[z]/3]
In[2]:= u[z_] := 共[f[z]]
In[3]:= v[z_] := Im[f[z]]
ln[4]:= Plot3D[u[x+I*y], {x, -3, 3}, {y, -3, 3},
    AxesLabel }->\mathrm{ Automatic]
```


(i) Graph of $u(z)$

```
ln[5]= Plot3D[v[x+I*y],{x,-3, 3},{y,-3, 3},
    AxesLabel }->\mathrm{ Automatic]
```


(ii) Graph of $v(z)$
(b) Determine the region of continuity of $f$.

Proof. We can see from the graph in the above that $u(z)$ is continuous everywhere except at the origin $(0,0)$, and $v(z)$ is discontinuous on the line $x \leq 0, y=0$. Therefore, we conclude that $f$ is continuous on the region:

$$
\mathbb{C} \backslash\{z=x+i y: x \leq 0, y=0\}
$$

## Exercise 4.

$$
g(z)=\sqrt[3]{z}=e^{\frac{1}{3} \log z}=e^{\frac{1}{3}(\log z+k 2 \pi i)}
$$

where $k=0,1,2$.
(a)

```
p[k_] := Plot3D[
    Re[Exp[1/3*(Log[x + I*y] + 2*k*Pi*I)]], {x, -1, 1}, {y, -1, 1}]
Show[p[0], p[1], p[2], PlotRange -> All]
```

Note that graph $p[3]$ is the same as $p[0]$, graph $p[4]$ is the same as $p[1]$, etc. This is because the exponential function is periodic with period $2 \pi i$. Therefore, we only need to show $p[0]$, $p[1], p[2]$.


Graph of the real part of $\sqrt[3]{z}$
(b)

```
p[k_] := Plot3D[
    Im[Exp[1/3*(Log[x + I*y] + 2*k*Pi*I)]], {x, -1, 1}, {y, -1, 1}]
Show[p[0], p[1], p[2], PlotRange -> All]
```

Note that graph $p[3]$ is the same as $p[0]$, graph $p[4]$ is the same as $p[1]$, etc. This is because the exponential function is periodic with period $2 \pi i$. Therefore, we only need to show $p[0]$, $p[1], p[2]$.


Graph of the imaginary part of $\sqrt[3]{z}$

