MTH 483/583 Complex Variables – Homework 4

Solution Key

Spring 2020

Exercise 1. Find the following limits. Distinguish between the limit that is equal to ∞ and limit that does not exist. If the limit is a complex number, write your answers in either standard or polar form.

(a)
$$\lim_{z \to i+1} \frac{(z-i)(2z+1)}{z+1}$$

Answer: The function

$$f(z) = \frac{(z-i)(2z+1)}{z+1}$$

is a rational function. It is continuous everywhere except at i + 1. Therefore,

$$\lim_{z \to i+1} f(z) = f(i+1) = \frac{(i+1-i)(2i+3)}{i+2}$$
$$= \boxed{\frac{8}{5} + i\frac{1}{5}}$$

(b) $\lim_{z \to i} \frac{z^2 + 1}{(z - i)(z + 1)}$

Answer:

$$\lim_{z \to i} \frac{z^2 + 1}{(z - i)(z + 1)} = \lim_{z \to i} \frac{(z - i)(z + i)}{(z - i)(z + 1)}$$
$$= \lim_{z \to i} \frac{z + i}{z + 1} = \frac{2i}{i + 1}$$
$$= \boxed{1 + i}$$

Г		٦
L		
L		

(c) $\lim_{z \to -i} \frac{z^3 - i}{(z+i)(z-1)}$

Answer: We see that the limit is currently in the indefinite form $\frac{0}{0}$. We can factor (z + i) from $z^3 - i$ by using long division: $z^3 - i = (z + i)(z^2 - iz - 1)$. Thus,

$$\lim_{z \to -i} \frac{z^3 - i}{(z+i)(z-1)} = \lim_{z \to -i} \frac{(z+i)(z^2 - iz - 1)}{(z+i)(z-1)}$$
$$= \lim_{z \to -i} \frac{z^2 - iz - 1}{z-1} = \frac{(-i)^2 - i(-i) - 1}{-1-i}$$
$$= \boxed{\frac{3}{2} - i\frac{3}{2}}$$

(d) $\lim_{z \to e^{i\frac{\pi}{3}}} \frac{z}{z^3 + 1}$

Answer: Because z approaches a nonzero number, namely, $e^{i\frac{\pi}{3}}$, and the denominator approaches

$$(e^{i\frac{\pi}{3}})^3 + 1 = e^{i\pi} + 1 = -1 + 1 = 0$$

the limit of the fraction is equal to ∞ .

(e)
$$\lim_{z \to \infty} \frac{z^2 + 1}{(z - 2i)(z + 1)}$$

Answer:

$$\lim_{z \to \infty} \frac{z^2 + 1}{(z - 2i)(z + 1)} = \lim_{z \to \infty} \frac{1 + \frac{1}{z^2}}{(1 - \frac{2i}{z})(1 + \frac{1}{z})} = \frac{1 + 0}{(1 - 0)(1 + 0)} = \boxed{1}$$

(f)
$$\lim_{z \to \infty} \frac{z^2 + 1}{z + 1}$$

Answer:

$$\lim_{z \to \infty} \frac{z^2 + 1}{z + 1} = \lim_{z \to \infty} \frac{1 + \frac{1}{z^2}}{\frac{1}{z} + \frac{1}{z^2}}$$

The numerator goes to 1 (a nonzero number) and the denominator goes to 0. Hence, the limit is equal to ∞ .

(g) $\lim_{z \to \infty} \frac{\bar{z}}{z}$

Answer: Let us analyse the problem as follows. Write $z = re^{i\theta}$. Taking z to ∞ is equivalent to taking r to ∞ . There is no constraint on the argument θ as $z \to \infty$. We have

$$\frac{\bar{z}}{z} = \frac{re^{-i\theta}}{re^{i\theta}} = e^{-2i\theta}$$

This number is independent of r. If z goes to infinity along the half-line where the argument is θ then the limit is equal to $e^{-2i\theta}$. This limit is different when θ varies. Thus, the limit

does not exist. To make our reasoning more rigorous, let us consider two sequences: $z_n = n$ (tending to ∞ along the positive real axis) and $w_n = in$ (tending to ∞ along the positive imaginary axis). We have

$$f(z_n) = f(n) = \frac{n}{n} = 1$$

and

$$f(w_n) = f(in) = \frac{-in}{in} = -1$$

We see that $\lim f(z_n) = 1 \neq \lim f(w_n) = -1$.

(h)
$$\lim_{z \to \infty} e^{-1/z^2}$$

Answer: When $z \to \infty$, we have $\frac{1}{z^2} \to 0$. This is because

$$\left|\frac{1}{z^2} - 0\right| = \left|\frac{1}{z^2}\right| = \frac{1}{|z|^2} \to 0$$

Because the exponential is a continuous function, we have

$$\lim_{z \to \infty} e^{-1/z^2} = e^0 = \boxed{1}$$

(i) $\lim_{z \to \infty} \sin z$

Answer: Let $z_n = 2n\pi + \frac{\pi}{2}$ and $w_n = 2n\pi + \frac{3\pi}{2}$. Both sequences goes to infinity. However,

 $\sin(z_n) = 1$ $\sin(w_n) = -1$

Because the limits of $\sin z_n$ and of $\sin w_n$ are different, the limit $\lim_{z\to\infty} \sin z$ does not exist.

(j) $\lim_{z \to \infty} \frac{\sin z}{z}$

Answer: Let $z_n = (n + 1/2)\pi$. Then

$$\frac{\sin z_n}{z_n} = \frac{1}{z_n} \to 0$$

because $z_n \to \infty$.

On the other hand, let $w_n = in$. Then

$$\frac{\sin w_n}{w_n} = \frac{e^{-n} - e^n}{-2n} \to \frac{e^n - e^{-n}}{2n} = \infty$$

Therefore, the limit does not exist.

Exercise 2. (a) To get some visual insights about function f, let us plot the real part and imaginary part of f.

Plot3D[Re[Log[(x + I*y)^2 + 1]], {x, -2, 2}, {y, -2, 2},
AxesLabel -> Automatic]

Graph of the real part of $Log(z^2 + 1)$

Plot3D[Im[Log[(x + I*y)^2 + 1]], {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic]

Graph of the imaginary part of $Log(z^2 + 1)$

From the graphs, we observe that f is discontinuous on the lines z = ti with $t \leq -1$ or $t \geq 1$. Now let us make verify this guess. The principal logarithm is discontinuous on the negative real line $\mathbb{R}_{\leq 0}$. Thus, f is continuous at any point z where $z^2 + 1 \notin \mathbb{R}_{\leq 0}$. To find all z such that $z^2 + 1 \in \mathbb{R}_{\leq 0}$, we write z = x + iy. Then

$$z^{2} + 1 = (x^{2} - y^{2} + 1) + i2xy.$$

For this number to be on $\mathbb{R}_{\leq 0}$, we need

$$\begin{cases} x^2 - y^2 + 1 \le 0, \\ 2xy = 0. \end{cases}$$

We get x = 0 and $y^2 \ge 1$. Hence, the set of all z such that $z^2 + 1 \in \mathbb{R}_{\le 0}$ is the lines z = iy with $y \le -1$ or $y \ge 1$. We will show that f is indeed discontinuous at every point on these lines.

Discontinuity of $Log(z^2 + 1)$

When z crosses the green line, $z^2 + 1$ crosses the red line, causing $\text{Log}(z^2 + 1)$ to jump by $2\pi i$.

(b) To get some visual insights about function f, let us plot the real part and imaginary part of f.

```
Plot3D[Re[Log[(x + I*y)^2 + I]], {x, -2, 2}, {y, -2, 2},
AxesLabel -> Automatic]
```


Graph of the real part of $Log(z^2 + i)$

Plot3D[Im[Log[(x + I*y)^2 + I]], {x, -2, 2}, {y, -2, 2},
AxesLabel -> Automatic]

Graph of the imaginary part of $Log(z^2 + i)$

From the graphs, we observe that f is discontinuous on two curves. It is not clear yet what these curves are. Let us do further analysis. The principal logarithm is discontinuous on the negative real line $\mathbb{R}_{\leq 0}$. Thus, f is continuous at any point z where $z^2 + i \notin \mathbb{R}_{\leq 0}$. To find all z such that $z^2 + i \in \mathbb{R}_{\leq 0}$, we write z = x + iy. Then

$$z^{2} + i = (x^{2} - y^{2}) + i(2xy + 1).$$

For this number to be on $\mathbb{R}_{\leq 0}$, we need

$$\begin{cases} x^2 - y^2 \le 0, \\ 2xy + 1 = 0. \end{cases}$$

We get y = -1/(2x) and $x^4 \le 1/4$. Hence, the set of all z such that $z^2 + i \in \mathbb{R}_{\le 0}$ is the hyperbola y = -1/(2x) with $-1/\sqrt{2} \le x < 0$ and $0 < x \le 1/\sqrt{2}$. We will show that f is indeed discontinuous at every point on these hyperbola.

Discontinuity of $Log(z^2 + i)$

When z crosses the green curve, $z^2 + i$ crosses the red line, causing $\text{Log}(z^2 + i)$ to jump by $2\pi i$.

(c) To get some visual insights about function f, let us plot the real part and imaginary part of f.

```
f[z_] := Sqrt[z - 1]*Sqrt[z + I]
Plot3D[Re[f[x + I*y]], {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic]
```


Graph of the real part of $\sqrt{z-1}\sqrt{z+i}$

Plot3D[Im[f[x + I*y]], {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic]

Graph of the imaginary part of $\sqrt{z-1}\sqrt{z+i}$

From the graphs, we observe that f is discontinuous on two straight lines. Let us do further analysis to determine these lines. The principal logarithm is discontinuous on the negative real line $\mathbb{R}_{\leq 0}$. Thus, f is continuous at any point z where $z - 1 \notin \mathbb{R}_{\leq 0}$ and $z + i \notin \mathbb{R}_{\leq 0}$. To find all z such that $z - 1 \in \mathbb{R}_{\leq 0}$, we write $z - 1 = t \in \mathbb{R}_{\leq 0}$. Then $z = t + 1 \in \mathbb{R}_{\leq 1}$. This is the first line. To find all z such that $z + i \in \mathbb{R}_{\leq 0}$, we write $z + i = t \in \mathbb{R}_{\leq 0}$. Then z = t - i. The set of all points t - i where $t \in \mathbb{R}_{\leq 0}$ is the line $x \leq 0$, y = -1. This is the second line. We will show that f is indeed discontinuous at every point on these lines.

Discontinuity of $\sqrt{z-1}\sqrt{z+i}$

When z crosses the curve $x \leq 1$, y = 0, the function $\sqrt{z-1}$ suddenly changes sign (because it is scaled by factor $e^{i\pi} = -1$) but the function $\sqrt{z+i}$ varies continuously and is nonzero. The product $\sqrt{z-1}\sqrt{z+i}$ therefore switches its sign suddenly (and is nonzero). Thus, it is discontinuous at every point on the curve $x \leq 1$, y = 0. One can use similar reasoning for the curve $x \leq 0$, y = -1.

(d)

$$f(z) = (z^2 + 1)^i = e^{i \operatorname{Log}(z^2 + 1)}$$

This is a composite function. At points z where $\text{Log}(z^2+1)$ is continuous, f is also continuous. We only need to check the continuity of f at the points where $\text{Log}(z^2+1)$ is discontinuous. According to Part (a), these are points lying on the lines $x = 0, y \ge 1$ and $x = 0, y \le -1$. When z cross each line, $\text{Log}(z^2+1)$ jumps by $2\pi i$. Then $\frac{1}{2}\text{Log}(z^2+1)$ jumps by πi . Hence, $e^{i\text{Log}(z^2+1)}$ is scaled by $e^{\pi i i} = e^{-\pi}$. That is, f(z) is suddenly scaled by factor $e^{-\pi}$ when z crosses the line $x = 0, y \ge 1$ or the line $x = 0, y \le -1$. In conclusion, the region of continuity of f is

$$\mathbb{C} \setminus \{ z = x + iy : x = 0, y \le -1 \text{ or } y \ge 1 \}$$

Exercise 3. Let $f(z) = \sqrt[3]{z}$ with the principal logarithm being used.

(a) Plot the real and imaginary part of f(z).

Answer: Notice that

$$\sqrt[3]{z} = e^{\frac{1}{3}Log(z)}$$

(b) Determine the region of continuity of f.

Proof. We can see from the graph in the above that u(z) is continuous everywhere except at the origin (0,0), and v(z) is discontinuous on the line $x \leq 0$, y = 0. Therefore, we conclude that f is continuous on the region:

$$\mathbb{C} \setminus \{ z = x + iy : x \le 0, y = 0 \}$$

Exercise 4.

$$g(z) = \sqrt[3]{z} = e^{\frac{1}{3}\log z} = e^{\frac{1}{3}(\log z + k2\pi i)}$$

where k = 0, 1, 2.

(a)

```
p[k_] := Plot3D[
    Re[Exp[1/3*(Log[x + I*y] + 2*k*Pi*I)]], {x, -1, 1}, {y, -1, 1}]
Show[p[0], p[1], p[2], PlotRange -> All]
```

Note that graph p[3] is the same as p[0], graph p[4] is the same as p[1], etc. This is because the exponential function is periodic with period $2\pi i$. Therefore, we only need to show p[0], p[1], p[2].

Graph of the real part of $\sqrt[3]{z}$

(b)

```
p[k_] := Plot3D[
    Im[Exp[1/3*(Log[x + I*y] + 2*k*Pi*I)]], {x, -1, 1}, {y, -1, 1}]
Show[p[0], p[1], p[2], PlotRange -> All]
```

Note that graph p[3] is the same as p[0], graph p[4] is the same as p[1], etc. This is because the exponential function is periodic with period $2\pi i$. Therefore, we only need to show p[0], p[1], p[2].

Graph of the imaginary part of $\sqrt[3]{z}$