
MTH 483/583 Complex Variables – Homework 4

Solution Key

Spring 2020

Exercise 1. Find the following limits. Distinguish between the limit that is equal to ∞
and limit that does not exist. If the limit is a complex number, write your answers in either
standard or polar form.

(a) lim
z→i+1

(z−i)(2z+1)
z+1

Answer: The function

f(z) =
(z − i)(2z + 1)

z + 1

is a rational function. It is continuous everywhere except at i+ 1. Therefore,

lim
z→i+1

f(z) = f(i+ 1) =
(i+ 1− i)(2i+ 3)

i+ 2

=
8

5
+ i

1

5

(b) lim
z→i

z2+1
(z−i)(z+1)

Answer:

lim
z→i

z2 + 1

(z − i)(z + 1)
= lim

z→i

(z − i)(z + i)

(z − i)(z + 1)

= lim
z→i

z + i

z + 1
=

2i

i+ 1

= 1 + i

(c) lim
z→−i

z3−i
(z+i)(z−1)
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Answer: We see that the limit is currently in the indefinite form 0
0
. We can factor (z + i)

from z3 − i by using long division: z3 − i = (z + i)(z2 − iz − 1). Thus,

lim
z→−i

z3 − i
(z + i)(z − 1)

= lim
z→−i

(z + i)(z2 − iz − 1)

(z + i)(z − 1)

= lim
z→−i

z2 − iz − 1

z − 1
=

(−i)2 − i(−i)− 1

−1− i

=
3

2
− i3

2

(d) lim
z→ei

π
3

z
z3+1

Answer: Because z approaches a nonzero number, namely, ei
π
3 , and the denominator ap-

proaches
(ei

π
3 )3 + 1 = eiπ + 1 = −1 + 1 = 0

the limit of the fraction is equal to ∞ .

(e) lim
z→∞

z2+1
(z−2i)(z+1)

Answer:

lim
z→∞

z2 + 1

(z − 2i)(z + 1)
= lim

z→∞

1 + 1
z2

(1− 2i
z

)(1 + 1
z
)

=
1 + 0

(1− 0)(1 + 0)
= 1

(f) lim
z→∞

z2+1
z+1

Answer:

lim
z→∞

z2 + 1

z + 1
= lim

z→∞

1 + 1
z2

1
z

+ 1
z2

The numerator goes to 1 (a nonzero number) and the denominator goes to 0. Hence, the
limit is equal to ∞.

(g) lim
z→∞

z̄
z

Answer: Let us analyse the problem as follows. Write z = reiθ. Taking z to ∞ is equivalent
to taking r to ∞. There is no constraint on the argument θ as z →∞. We have

z̄

z
=
re−iθ

reiθ
= e−2iθ

This number is independent of r. If z goes to infinity along the half-line where the argument
is θ then the limit is equal to e−2iθ. This limit is different when θ varies. Thus, the limit
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does not exist. To make our reasoning more rigorous, let us consider two sequences: zn = n
(tending to ∞ along the positive real axis) and wn = in (tending to ∞ along the positive
imaginary axis). We have

f(zn) = f(n) =
n

n
= 1

and

f(wn) = f(in) =
−in
in

= −1

We see that lim f(zn) = 1 6= lim f(wn) = −1.

(h) lim
z→∞

e−1/z2

Answer: When z →∞, we have 1
z2
→ 0. This is because∣∣∣∣ 1

z2
− 0

∣∣∣∣ =

∣∣∣∣ 1

z2

∣∣∣∣ =
1

|z|2
→ 0.

Because the exponential is a continuous function, we have

lim
z→∞

e−1/z2 = e0 = 1

(i) lim
z→∞

sin z

Answer: Let zn = 2nπ + π
2

and wn = 2nπ + 3π
2

. Both sequences goes to infinity. However,

sin(zn) = 1

sin(wn) = −1

Because the limits of sin zn and of sinwn are different, the limit limz→∞ sin z does not exist .

(j) lim
z→∞

sin z
z

Answer: Let zn = (n+ 1/2)π. Then

sin zn
zn

=
1

zn
→ 0

because zn →∞.

On the other hand, let wn = in. Then

sinwn
wn

=
e−n − en

−2n
→ en − e−n

2n
=∞

Therefore, the limit does not exist .
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Exercise 2. (a) To get some visual insights about function f , let us plot the real part and
imaginary part of f .

Plot3D[Re[Log[(x + I*y)^2 + 1]], {x, -2, 2}, {y, -2, 2},

AxesLabel -> Automatic]

Graph of the real part of Log(z2 + 1)

Plot3D[Im[Log[(x + I*y)^2 + 1]], {x, -2, 2}, {y, -2, 2},

AxesLabel -> Automatic]

Graph of the imaginary part of Log(z2 + 1)

From the graphs, we observe that f is discontinuous on the lines z = ti with t ≤ −1 or t ≥ 1.
Now let us make verify this guess. The principal logarithm is discontinuous on the negative
real line R≤0. Thus, f is continuous at any point z where z2 + 1 6∈ R≤0. To find all z such
that z2 + 1 ∈ R≤0, we write z = x+ iy. Then

z2 + 1 = (x2 − y2 + 1) + i2xy.

For this number to be on R≤0, we need{
x2 − y2 + 1 ≤ 0,

2xy = 0.
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We get x = 0 and y2 ≥ 1. Hence, the set of all z such that z2 + 1 ∈ R≤0 is the lines z = iy
with y ≤ −1 or y ≥ 1. We will show that f is indeed discontinuous at every point on these
lines.

Discontinuity of Log(z2 + 1)

When z crosses the green line, z2 +1 crosses the red line, causing Log(z2 +1) to jump by 2πi.

(b) To get some visual insights about function f , let us plot the real part and imaginary
part of f .

Plot3D[Re[Log[(x + I*y)^2 + I]], {x, -2, 2}, {y, -2, 2},

AxesLabel -> Automatic]

Graph of the real part of Log(z2 + i)

Plot3D[Im[Log[(x + I*y)^2 + I]], {x, -2, 2}, {y, -2, 2},

AxesLabel -> Automatic]
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Graph of the imaginary part of Log(z2 + i)

From the graphs, we observe that f is discontinuous on two curves. It is not clear yet what
these curves are. Let us do further analysis. The principal logarithm is discontinuous on the
negative real line R≤0. Thus, f is continuous at any point z where z2 + i 6∈ R≤0. To find all
z such that z2 + i ∈ R≤0, we write z = x+ iy. Then

z2 + i = (x2 − y2) + i(2xy + 1).

For this number to be on R≤0, we need{
x2 − y2 ≤ 0,
2xy + 1 = 0.

We get y = −1/(2x) and x4 ≤ 1/4. Hence, the set of all z such that z2 + i ∈ R≤0 is the
hyperbola y = −1/(2x) with −1/

√
2 ≤ x < 0 and 0 < x ≤ 1/

√
2. We will show that f is

indeed discontinuous at every point on these hyperbola.

Discontinuity of Log(z2 + i)

When z crosses the green curve, z2+i crosses the red line, causing Log(z2+i) to jump by 2πi.

(c) To get some visual insights about function f , let us plot the real part and imaginary part
of f .
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f[z_] := Sqrt[z - 1]*Sqrt[z + I]

Plot3D[Re[f[x + I*y]], {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic]

Graph of the real part of
√
z − 1

√
z + i

Plot3D[Im[f[x + I*y]], {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic]

Graph of the imaginary part of
√
z − 1

√
z + i

From the graphs, we observe that f is discontinuous on two straight lines. Let us do further
analysis to determine these lines. The principal logarithm is discontinuous on the negative
real line R≤0. Thus, f is continuous at any point z where z − 1 6∈ R≤0 and z + i 6∈ R≤0. To
find all z such that z − 1 ∈ R≤0, we write z − 1 = t ∈ R≤0. Then z = t + 1 ∈ R≤1. This is
the first line. To find all z such that z + i ∈ R≤0, we write z + i = t ∈ R≤0. Then z = t− i.
The set of all points t− i where t ∈ R≤0 is the line x ≤ 0, y = −1. This is the second line.
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We will show that f is indeed discontinuous at every point on these lines.

Discontinuity of
√
z − 1

√
z + i

When z crosses the curve x ≤ 1, y = 0, the function
√
z − 1 suddenly changes sign (because

it is scaled by factor eiπ = −1) but the function
√
z + i varies continuously and is nonzero.

The product
√
z − 1

√
z + i therefore switches its sign suddenly (and is nonzero). Thus, it is

discontinuous at every point on the curve x ≤ 1, y = 0. One can use similar reasoning for
the curve x ≤ 0, y = −1.

(d)

f(z) = (z2 + 1)
i

= eiLog(z2+1)

This is a composite function. At points z where Log(z2+1) is continuous, f is also continuous.
We only need to check the continuity of f at the points where Log(z2 + 1) is discontinuous.
According to Part (a), these are points lying on the lines x = 0, y ≥ 1 and x = 0, y ≤ −1.
When z cross each line, Log(z2 + 1) jumps by 2πi. Then 1

2
Log(z2 + 1) jumps by πi. Hence,

eiLog(z2+1) is scaled by eπii = e−π. That is, f(z) is suddenly scaled by factor e−π when z
crosses the line x = 0, y ≥ 1 or the line x = 0, y ≤ −1. In conclusion, the region of
continuity of f is

C\{z = x+ iy : x = 0, y ≤ −1 or y ≥ 1}.

Exercise 3. Let f(z) = 3
√
z with the principal logarithm being used.

(a) Plot the real and imaginary part of f(z).

Answer: Notice that
3
√
z = e

1
3
Log(z)
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(i) Graph ofu(z)

(ii) Graph of v(z)
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(b) Determine the region of continuity of f .

Proof. We can see from the graph in the above that u(z) is continuous everywhere except at
the origin (0, 0), and v(z) is discontinuous on the line x ≤ 0, y = 0. Therefore, we conclude
that f is continuous on the region:

C \ {z = x+ iy : x ≤ 0, y = 0}

Exercise 4.
g(z) = 3

√
z = e

1
3

logz = e
1
3

(Logz+k2πi)

where k = 0, 1, 2.

(a)

p[k_] := Plot3D[

Re[Exp[1/3*(Log[x + I*y] + 2*k*Pi*I)]], {x, -1, 1}, {y, -1, 1}]

Show[p[0], p[1], p[2], PlotRange -> All]

Note that graph p[3] is the same as p[0], graph p[4] is the same as p[1], etc. This is because
the exponential function is periodic with period 2πi. Therefore, we only need to show p[0],
p[1], p[2].

Graph of the real part of 3
√
z

(b)

p[k_] := Plot3D[

Im[Exp[1/3*(Log[x + I*y] + 2*k*Pi*I)]], {x, -1, 1}, {y, -1, 1}]

Show[p[0], p[1], p[2], PlotRange -> All]
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Note that graph p[3] is the same as p[0], graph p[4] is the same as p[1], etc. This is because
the exponential function is periodic with period 2πi. Therefore, we only need to show p[0],
p[1], p[2].

Graph of the imaginary part of 3
√
z
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