Homework 4

Due 5/1/2020

1. Find the following limits. Distinguish between the limit that is equal to ∞ and limit that does not exist. If the limit is a complex number, write your answers in either standard or polar form.
(a) $\lim _{z \rightarrow i+1} \frac{(z-i)(2 z+1)}{z+1}$
(b) $\lim _{z \rightarrow i} \frac{z^{2}+1}{(z-i)(z+1)}$
(c) $\lim _{z \rightarrow-i} \frac{z^{3}-i}{(z+i)(z-1)}$
(d) $\lim _{z \rightarrow e^{i \frac{\pi}{3}}} \frac{z}{z^{3}+1}$
(e) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{(z-2 i)(z+1)}$
(f) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z+1}$
(g) $\lim _{z \rightarrow \infty} \frac{\bar{z}}{z}$
(h) $\lim _{z \rightarrow \infty} e^{-1 / z^{2}}$
(i) $\lim _{z \rightarrow \infty} \sin z$
(j) $\lim _{z \rightarrow \infty} \frac{\sin z}{z}$
2. Determine the region of continuity of the following functions.
(a) $f(z)=\log \left(z^{2}+1\right)$
(b) $f(z)=\log \left(z^{2}+i\right)$
(c) $f(z)=\sqrt{z-1} \sqrt{z+i} \quad$ (principal logarithm being used)
(d) $f(z)=\left(z^{2}+1\right)^{i} \quad$ (principal logarithm being used)

Before doing the following problems, please take a look at the supplemental material called "Guessing region of continuity and visualizing multivalued functions" posted on Canvas and course website. Make sure to include the Mathematica codes and figures you use and some brief comments.
3. Let $f(z)=\sqrt[3]{z}$ with the principal logarithm being used.
(a) Plot the real and imaginary part of $f(z)$.
(b) Determine the region of continuity of f.
4. Put $g(z)=\sqrt[3]{z}$ where the regular logarithm is used. This is a multivalued function.
(a) Plot the real part (all branches in one graph) of g.
(b) Plot the imaginary part (all branches in one graph) of g.

