MTH 483/583 Complex Variables - Homework 5

Solution Key

Spring 2020

Exercise 1. Let

$$
f(z)=\left(\frac{z+1}{z-1}\right)^{i}
$$

(a) Determine the region of continuity of f. That is, find all $z \in \mathbb{C}$ where f is continuous. Answer: Rewrite the function $f(z)$

$$
\left(\frac{z+1}{z-1}\right)^{i}=e^{i \log \left(\frac{z+1}{z-1}\right)}
$$

and note that $\log \left(\frac{z+1}{z-1}\right)$ is discontinuous at those z such that:

$$
\frac{z+1}{z-1} \in \mathbb{R}_{\leq 0}
$$

Write $z=x+i y$ then

$$
\frac{z+1}{z-1} \in \mathbb{R}_{\leq 0} \Longleftrightarrow \frac{x^{2}+y^{2}-1}{(x-1)^{2}+y^{2}}-i \frac{2 y}{(x-1)^{2}+y^{2}} \in \mathbb{R}_{\leq 0}
$$

Thus, $y=0$ and $x^{2} \leq 1$.
Therefore, $f(z)$ is continuous on the region

$$
\mathbb{C} \backslash\{z=x+i y:-1 \leq x \leq 1, y=0\}
$$

(b) Pick a point where f is discontinuous. Call it z_{0}. Use Mathematica to describe how f jumps at z_{0}.

Answer: Let us pick $z_{0}=-\frac{1}{2}$. Then

Explanation: as z crosses the x-axis when moving from south to north, the number $\frac{z+1}{z-1}$ crosses the negative real axis from north to south (see Figure 1). Then $\log \left(\frac{z+1}{z-1}\right)$ jumps by $-2 \pi i$. Then $e^{\mathrm{iLog}\left(\frac{z+1}{z-1}\right)}$ is scaled by $e^{i(-2 \pi i)}=e^{2 \pi} \approx 535$ times. Before z crosses the x-axis, $\frac{z+1}{z-1} \approx \frac{-1 / 2+1}{-1 / 2-1}=-1 / 3$ but is north of $-1 / 3$. Thus, $\log \left(\frac{z+1}{z-1}\right) \approx \ln (1 / 3)+i \pi$ and $e^{\mathrm{iLog}\left(\frac{z+1}{z-1}\right)} \approx e^{i(\ln (1 / 3)+i \pi)} \approx 0.0197+i 0.0385$, which is quite a small number. After z crosses the x-axis, this value is suddenly scaled by 535 times. This explains why in the graph we can only observe the big values (the values of f after z crosses the x-axis). The values of f before z crosses the x-axis are too small to see.

```
g[\mp@subsup{z}{-}{\prime}]:=(z+1)/(z-1)
p[s_] := ParametricPlot[ReIm[-1/2 + t*I], {t, -2, s},
    PlotRange -> {{-1, 1}, {-2, 2}}]
q[s_] := ParametricPlot[ReIm[g[-1/2 + t*I]], {t, -2, s},
    PlotRange -> {{-0.5, 1}, {-1, 1}}]
Manipulate[{p[s], q[s]}, {s, -1.9, 1.9}]
```

Exercise 2. Determine the region where each of the following function is differentiable. Find the derivative of the function. Determine the region where the function is holomorphic.
(a) $f(z)=\bar{z}^{2} z$

Answer: Write $z=x+i y$, then

$$
f(z)=\left(x^{3}+x y^{2}\right)+i\left(-x^{2} y-y^{3}\right)
$$

Figure 1:
Let $u(x, y)=x^{3}+x y^{2}$ and $v(x, y)=-x^{2} y-y^{3}$
Then Cauchy-Riemann equations

$$
\begin{gathered}
u_{x}=3 x^{2}+y^{2}, \quad u_{y}=2 x y \\
v_{x}=-2 x y, \quad v_{y}=-x^{2}-3 y^{2}
\end{gathered}
$$

and so

$$
u_{x}=v_{y} \Longleftrightarrow 4 x^{2}=-4 y^{2} \Longleftrightarrow x=y=0
$$

we also see that $u_{y}=-v_{x}$. Thus, since all the partial derivatives exist and are continuous in \mathbb{C}, and since the Cauchy-Riemann equations satisfied only at the origin, we conclude that f is differentiable only at the origin, and

$$
f^{\prime}(0)=f_{x}(0)=0
$$

Finally, f is nowhere holomorphic since f is differentiable only at $z=0$ and nowhere else.
(b) $f(z)=x^{2} y+x+i\left(x y^{2}-x+y\right)$, where $z=x+i y$.

Answer: Let $u(x, y)=x^{2} y+x, v(x, y)=x y^{2}-x+y$.
Cauchy-Riemann:

$$
\begin{gathered}
u_{x}=2 x y+1, \quad u_{y}=x^{2} \\
v_{x}=y^{2}-1, \quad v_{y}=2 x y+1
\end{gathered}
$$

Note that $u_{x}=v_{y}$ for all x, y, and

$$
u_{y}=-v_{x} \Longleftrightarrow x^{2}+y^{2}=1
$$

Therefore, since the Cauchy-Riemann equations hold for all the points on the unit circle, and all the partial derivatives exist and are continuous in $\mathbb{C}, f(z)$ is differentiable on the curve $x^{2}+y^{2}=1$.

$$
f^{\prime}(z)=f_{x}=(2 x y+1)+i\left(y^{2}-1\right)
$$

Finally, since for each point z_{0} on the unit circle and for any open set Ω that contains z_{0}, $f(z)$ is not differentiable at some points in Ω, so f is nowhere holomorphic.
(c) $f(z)=i^{z} \quad$ (principal logarithm is used)

Answer: There are two ways to do this problem.
Method 1: use composite function.
$f(z)=e^{i \log z}$ is a composite function.

$$
z \xrightarrow{\text { multiply by constant }} z \log (i) \xrightarrow{\text { exponentiate }} e^{z \log (i)}=f(z)
$$

To be more specific, $f(z)=g(h(z))$ where $g(z)=e^{z}$ and $h(z)=z \log (i)=z i \frac{\pi}{2}$. Because g and h are differentiable everywhere, so is f. By the chain rule,

$$
f^{\prime}(z)=g^{\prime}(h(z)) h^{\prime}(z)=e^{z \log (i)} \log (i)=i^{z} i \frac{\pi}{2}=i^{z+1} \frac{\pi}{2} .
$$

Method 2: use Cauchy-Riemann equations.
Let $z=x+i y$, then

$$
\begin{align*}
f(z) & =i^{z}=e^{z \log (i)}=e^{z i \frac{\pi}{2}} \\
& =e^{i \frac{\pi}{2}(x+i y)}=e^{-\frac{\pi}{2} y} e^{i \frac{\pi}{2} x} \tag{1}\\
& =e^{-\frac{\pi}{2} y} \cos \left(\frac{\pi}{2} x\right)+i e^{-\frac{\pi}{2} y} \sin \left(\frac{\pi}{2} x\right)
\end{align*}
$$

Let $u(x, y)=e^{-\frac{\pi}{2} y} \cos \left(\frac{\pi}{2} x\right)$ and $v(x, y)=e^{-\frac{\pi}{2} y} \sin \left(\frac{\pi}{2} x\right)$, then

$$
\begin{aligned}
u_{x} & =-\frac{\pi}{2} e^{-\frac{\pi}{2} y} \sin \left(\frac{\pi}{2} x\right) ; & u_{y} & =-\frac{\pi}{2} e^{-\frac{\pi}{2} y} \cos \left(\frac{\pi}{2} x\right) \\
v_{x} & =\frac{\pi}{2} e^{-\frac{\pi}{2} y} \cos \left(\frac{\pi}{2} x\right) ; & v_{y} & =-\frac{\pi}{2} e^{-\frac{\pi}{2} y} \sin \left(\frac{\pi}{2} x\right)
\end{aligned}
$$

It is easy to see that all the partial derivatives are continuous in \mathbb{C}. Moreover,

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

for every point $z=x+i y$ in \mathbb{C}, so the Cauchy-Riemann equations hold everywhere and therefore is entire.

Finally,

$$
f^{\prime}(z)=f_{x}=-\frac{\pi}{2} e^{-\frac{\pi}{2} y} \sin \left(\frac{\pi}{2} x\right)+i \frac{\pi}{2} e^{-\frac{\pi}{2} y} \cos \left(\frac{\pi}{2} x\right)
$$

Exercise 3. Determine the region where the function $f(z)=\tan z$ is differentiable. Then show that $f^{\prime}(z)=1+\tan ^{2} z$.

Answer: Note that

$$
\tan z:=\frac{\sin z}{\cos z}
$$

and $\operatorname{since} \sin z$ and $\cos z$ are entire functions, $\cos z=0$ when $z=\left(k+\frac{1}{2}\right) \pi, k \in \mathbb{Z}$.
Thus $f(z)$ is differentiable in the region

$$
\left\{z \in \mathbb{C}: z \neq\left(k+\frac{1}{2}\right) \pi\right\}
$$

Using differentiation rules:

$$
\begin{aligned}
f^{\prime}(z)= & \left(\frac{\sin z}{\cos z}\right)^{\prime}=\frac{(\sin z)^{\prime} \cos z-\sin z(\cos z)^{\prime}}{\cos ^{2} z} \\
& =\frac{\cos ^{2} z+\sin ^{2} z}{\cos ^{2} z}=1+\tan ^{2} z
\end{aligned}
$$

Exercise 4. Let $f(z)=\frac{z^{2}}{z-3 i}$ and $z_{0}=0$. Use Mathematica to show that f is not anglepreserving at z_{0}. What does f do to the angles at z_{0} instead?

Answer: We observe that

$$
f^{\prime}(0)=\left.\frac{z^{2}-6 i z}{(z-3 i)^{2}}\right|_{z=0}=0
$$

Because $f^{\prime}(0)=0$, we suspect that $\mathrm{s} f$ is not angle-preserving at $z=0$. When z is near $0, f(z)$ behaves like the function $\frac{z^{2}}{0-3 i}$, which doubles the angle of two curves that meet at the origin. We guess that f also doubles the angle between two curves that meet at the origin. Let us pick two curves to test our guess. Let us choose curve σ to be the half line
with $\theta=\pi / 4$ and λ to be the half line with $\theta=0$. That is $\sigma(t)=(1+i) t$ and $\lambda(t)=t$ where $t \geq 0$. The velocity vectors on σ and λ at 0 are

$$
\sigma^{\prime}(0)=1+i, \quad \lambda^{\prime}(0)=1 .
$$

In Mathematica, we can draw these two curves with their velocity vectors at the origin as follows (Figure 2).

```
z0 = 0
sigma[t_] := t*(1 + I)
lambda[t_] := t
u1 = D[sigma[t], t] /. t -> 0
u2 = D[lambda[t], t] /. t -> 0
ParametricPlot[{ReIm[sigma[t]], ReIm[lambda[t]]}, {t, 0, 2},
    PlotRange -> {{-1, 2}, {-1, 2}},
    Epilog -> {Arrow[{ReIm[z0], ReIm[z0] + ReIm[u1]}],
        Arrow[{ReIm[z0], ReIm[z0] + ReIm[u2]}]}]
```


Figure 2:
The image of σ under f is

$$
\Sigma(t)=f(\sigma(t))=f(a t)=\frac{a^{2} t^{2}}{a t-3 i},
$$

where $a=1+i$. The image of λ under f is

$$
\Lambda(t)=f(\lambda(t))=f(t)=\frac{t^{2}}{t-3 i}
$$

We can check that the velocity vectors $\Sigma^{\prime}(0)$ and $\Lambda^{\prime}(0)$ are both equal to 0 . They are not useful tangent vectors on Σ and Λ because we can't use them to compute the angle between these curves. To get nonzero tangent vectors, we have to reparametrize the curves Σ and Λ. The reason why the velocity vectors at $t=0$ are equal to 0 is because of the factor t^{2} in the numerator. We thus reparametrize the curve by $s=t^{2}$. We get

$$
\Sigma_{1}(s)=\frac{a^{2} s}{a \sqrt{s}-3 i}, \quad \Lambda_{1}(s)=\frac{s}{\sqrt{s}-3 i}
$$

Note that the shape of the curve Σ_{1} is the same as Σ. The only difference is the parametrization. Similarly, Λ_{1} and Λ differ from each other only by parametrization, not the shape. The velocity vectors on Σ_{1} and Λ_{1} at $t=0$ are

$$
\begin{gathered}
\Sigma_{1}^{\prime}(0)=\left.\frac{a^{2}(a \sqrt{s}-3 i)-a^{2} s \frac{a}{2 \sqrt{s}}}{(a \sqrt{s}-3 i)^{2}}\right|_{s=0}=\frac{a^{2}}{-3 i}, \\
\Lambda_{1}^{\prime}(0)=\frac{1}{-3 i} .
\end{gathered}
$$

In Mathematica, we can draw these two curves with their velocity vectors at the origin as follows Figure 3).

```
f[z_] := z^2/(z - 3*I)
w0 = f[z0]
a = 1 + I
Sigma1[s_] := a^2*s/(a*Sqrt[s] - 3*I)
Lambda1[s_] := s/(Sqrt[s] - 3*I)
v1 = D[Sigma1[s], s] /. s -> 0
v2 = D[Lambda1[s], s] /. s -> 0
ParametricPlot[{ReIm[Sigma1[s]], ReIm[Lambda1[s]]}, {s, 0, 3},
    PlotRange -> {{-1, 1}, {-0.5, 1}},
    Epilog -> {Arrow[{ReIm[w0], ReIm[w0] + ReIm[v1]}],
        Arrow[{ReIm[w0], ReIm[w0] + ReIm[v2]}]}]
```

We see from the graph that the angle between Σ_{1} and Λ_{1} is $\pi / 2$, whereas the angle between σ and λ is $\pi / 4$. This experiment confirms our guess that f doubles the angles between two curves that meet at the origin.

Exercise 5. Consider the function $f(z)=z^{3}$
(a) Sketch the image of the vertical line $(\ell): x=1$ under f. Note that the image curve intersects itself.

$$
\begin{aligned}
& \quad f\left[z_{-}\right]:=z^{\wedge} 3 \\
& \text { ParametricPlot[ReIm[f[1+t*I]], \{t, }-3,3\}, \\
& \text { AspectRatio } \rightarrow \text { Automatic, AxesOrigin } \rightarrow \text {, } 0\}]
\end{aligned}
$$

Figure 3:

(b) Find two distinct points z_{1} and z_{2} on (ℓ) such that $f\left(z_{1}\right)=f\left(z_{2}\right)$.

Answer: Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ where $\theta_{1}=\operatorname{Arg} z_{1} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\theta_{2}=\operatorname{Arg} z_{2} \in$ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Without loss of generality, we may assume that $\theta_{1} \geq \theta_{2}$. Then

$$
\left(\frac{z_{1}}{z_{2}}\right)^{3}=1 \Longleftrightarrow\left(\frac{r_{1}}{r_{2}}\right)^{3} e^{i 3\left(\theta_{1}-\theta_{2}\right)}=1
$$

so

$$
\frac{r_{1}}{r_{2}}=1 \quad \text { or } \quad r_{1}=r_{2}
$$

and

$$
\theta_{1}-\theta_{2}=\frac{2 k \pi}{3}, \quad k \in \mathbb{Z}
$$

We can see from Figure 4 that the angle between z_{1} and z_{2} cannot exceed π. Thus,

$$
\theta_{1}-\theta_{2}=\frac{2 \pi}{3}
$$

Figure 4:
Furthermore, because $r_{1}=r_{2}$, the triangle with vertices at $0, z_{1}, z_{2}$ is an isosceles triangle. This implies

$$
\theta_{1}=-\theta_{2}
$$

Therefore,

$$
z_{1}=2 e^{i \frac{\pi}{3}}=1+i \sqrt{3}, \quad z_{2}=2 e^{-i \frac{\pi}{3}}=1-i \sqrt{3}
$$

(c) Find $f^{\prime}\left(z_{1}\right)$ and $f^{\prime}\left(z_{2}\right)$.

Answer:

$$
f^{\prime}\left(z_{1}\right)=3 z_{1}^{2}=-6+6 \sqrt{3} i
$$

and

$$
f^{\prime}\left(z_{2}\right)=3 z_{2}^{2}=-6-6 \sqrt{3} i
$$

(d) Find the angle at which the image curve intersects itself.

Answer: The angle at the intersection of the curve is

$$
\theta=\operatorname{Arg}\left(f^{\prime}\left(z_{2}\right)\right)-\operatorname{Arg}\left(f^{\prime}\left(z_{1}\right)\right)=-\frac{2 \pi}{3}-\frac{2 \pi}{3}=-\frac{4 \pi}{3}
$$

which is $2 \pi / 3$ in modulo 2π.

