
MTH 483/583 Complex Variables – Homework 5

Solution Key

Spring 2020

Exercise 1. Let

f(z) =

(
z + 1

z − 1

)i

(a) Determine the region of continuity of f . That is, find all z ∈ C where f is continuous.

Answer: Rewrite the function f(z)(
z + 1

z − 1

)i

= eiLog(
z+1
z−1

)

and note that Log( z+1
z−1) is discontinuous at those z such that:

z + 1

z − 1
∈ R≤0

Write z = x+ iy then

z + 1

z − 1
∈ R≤0 ⇐⇒

x2 + y2 − 1

(x− 1)2 + y2
− i 2y

(x− 1)2 + y2
∈ R≤0

Thus, y = 0 and x2 ≤ 1.
Therefore, f(z) is continuous on the region

C \ {z = x+ iy : −1 ≤ x ≤ 1, y = 0}

(b) Pick a point where f is discontinuous. Call it z0. Use Mathematica to describe how f
jumps at z0.

Answer: Let us pick z0 = −1
2
. Then
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Explanation: as z crosses the x-axis when moving from south to north, the number z+1
z−1

crosses the negative real axis from north to south (see Figure 1). Then Log
(
z+1
z−1

)
jumps

by −2πi. Then eiLog(
z+1
z−1) is scaled by ei(−2πi) = e2π ≈ 535 times. Before z crosses the

x-axis, z+1
z−1 ≈

−1/2+1
−1/2−1 = −1/3 but is north of −1/3. Thus, Log

(
z+1
z−1

)
≈ ln(1/3) + iπ and

eiLog(
z+1
z−1) ≈ ei(ln(1/3)+iπ) ≈ 0.0197 + i0.0385, which is quite a small number. After z crosses

the x-axis, this value is suddenly scaled by 535 times. This explains why in the graph we
can only observe the big values (the values of f after z crosses the x-axis). The values of f
before z crosses the x-axis are too small to see.

g[z_] := (z + 1)/(z - 1)

p[s_] := ParametricPlot[ReIm[-1/2 + t*I], {t, -2, s},

PlotRange -> {{-1, 1}, {-2, 2}}]

q[s_] := ParametricPlot[ReIm[g[-1/2 + t*I]], {t, -2, s},

PlotRange -> {{-0.5, 1}, {-1, 1}}]

Manipulate[{p[s], q[s]}, {s, -1.9, 1.9}]

Exercise 2. Determine the region where each of the following function is differentiable.
Find the derivative of the function. Determine the region where the function is holomorphic.

(a) f(z) = z̄2z

Answer: Write z = x+ iy, then

f(z) = (x3 + xy2) + i(−x2y − y3)
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Figure 1:

Let u(x, y) = x3 + xy2 and v(x, y) = −x2y − y3
Then Cauchy-Riemann equations

ux = 3x2 + y2, uy = 2xy

vx = −2xy, vy = −x2 − 3y2

and so

ux = vy ⇐⇒ 4x2 = −4y2 ⇐⇒ x = y = 0

we also see that uy = −vx. Thus, since all the partial derivatives exist and are continuous
in C, and since the Cauchy-Riemann equations satisfied only at the origin, we conclude that
f is differentiable only at the origin, and

f ′(0) = fx(0) = 0

Finally, f is nowhere holomorphic since f is differentiable only at z = 0 and nowhere
else.

(b) f(z) = x2y + x+ i(xy2 − x+ y), where z = x+ iy.

Answer: Let u(x, y) = x2y + x, v(x, y) = xy2 − x+ y.

Cauchy-Riemann:
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ux = 2xy + 1, uy = x2

vx = y2 − 1, vy = 2xy + 1

Note that ux = vy for all x, y, and

uy = −vx ⇐⇒ x2 + y2 = 1

Therefore, since the Cauchy-Riemann equations hold for all the points on the unit circle,
and all the partial derivatives exist and are continuous in C, f(z) is differentiable on the
curve x2 + y2 = 1.

f ′(z) = fx = (2xy + 1) + i(y2 − 1)

Finally, since for each point z0 on the unit circle and for any open set Ω that contains z0,
f(z) is not differentiable at some points in Ω, so f is nowhere holomorphic.

(c) f(z) = iz (principal logarithm is used)

Answer: There are two ways to do this problem.
Method 1: use composite function.
f(z) = eiLogz is a composite function.

z
multiply by constant−−−−−−−−−−−→ zLog(i)

exponentiate−−−−−−−→ ezLog(i) = f(z)

To be more specific, f(z) = g(h(z)) where g(z) = ez and h(z) = zLog(i) = ziπ
2
. Because g

and h are differentiable everywhere, so is f . By the chain rule,

f ′(z) = g′(h(z))h′(z) = ezLog(i)Log(i) = izi
π

2
= iz+1π

2
.

Method 2: use Cauchy-Riemann equations.
Let z = x+ iy, then

f(z) = iz = ezLog(i) = ezi
π
2

= ei
π
2
(x+iy) = e−

π
2
y ei

π
2
x

= e−
π
2
y cos(

π

2
x) + ie−

π
2
y sin(

π

2
x)

(1)

Let u(x, y) = e−
π
2
y cos(π

2
x) and v(x, y) = e−

π
2
y sin(π

2
x), then

ux = −π
2
e−

π
2
y sin(

π

2
x); uy = −π

2
e−

π
2
y cos(

π

2
x)

vx =
π

2
e−

π
2
y cos(

π

2
x); vy = −π

2
e−

π
2
y sin(

π

2
x)
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It is easy to see that all the partial derivatives are continuous in C. Moreover,

ux = vy, uy = −vx
for every point z = x+ iy in C, so the Cauchy-Riemann equations hold everywhere and

therefore is entire.
Finally,

f ′(z) = fx = −π
2
e−

π
2
y sin(

π

2
x) + i

π

2
e−

π
2
y cos(

π

2
x)

Exercise 3. Determine the region where the function f(z) = tan z is differentiable. Then
show that f ′(z) = 1 + tan2 z.

Answer: Note that

tan z :=
sin z

cos z

and since sin z and cos z are entire functions, cos z = 0 when z =
(
k + 1

2

)
π, k ∈ Z.

Thus f(z) is differentiable in the region{
z ∈ C : z 6=

(
k +

1

2

)
π

}
Using differentiation rules:

f ′(z) =

(
sin z

cos z

)′
=

(sin z)′ cos z − sin z(cos z)′

cos2 z

=
cos2 z + sin2 z

cos2 z
= 1 + tan2 z

Exercise 4. Let f(z) = z2

z−3i and z0 = 0. Use Mathematica to show that f is not angle-
preserving at z0. What does f do to the angles at z0 instead?

Answer: We observe that

f ′(0) =
z2 − 6iz

(z − 3i)2
|z=0= 0.

Because f ′(0) = 0, we suspect that sf is not angle-preserving at z = 0. When z is near
0, f(z) behaves like the function z2

0−3i , which doubles the angle of two curves that meet at
the origin. We guess that f also doubles the angle between two curves that meet at the
origin. Let us pick two curves to test our guess. Let us choose curve σ to be the half line
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with θ = π/4 and λ to be the half line with θ = 0. That is σ(t) = (1+ i)t and λ(t) = t where
t ≥ 0. The velocity vectors on σ and λ at 0 are

σ′(0) = 1 + i, λ′(0) = 1.

In Mathematica, we can draw these two curves with their velocity vectors at the origin as
follows (Figure 2).

z0 = 0

sigma[t_] := t*(1 + I)

lambda[t_] := t

u1 = D[sigma[t], t] /. t -> 0

u2 = D[lambda[t], t] /. t -> 0

ParametricPlot[{ReIm[sigma[t]], ReIm[lambda[t]]}, {t, 0, 2},

PlotRange -> {{-1, 2}, {-1, 2}},

Epilog -> {Arrow[{ReIm[z0], ReIm[z0] + ReIm[u1]}],

Arrow[{ReIm[z0], ReIm[z0] + ReIm[u2]}]}]

Figure 2:

The image of σ under f is

Σ(t) = f(σ(t)) = f(at) =
a2t2

at− 3i
,

where a = 1 + i. The image of λ under f is

Λ(t) = f(λ(t)) = f(t) =
t2

t− 3i
.
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We can check that the velocity vectors Σ′(0) and Λ′(0) are both equal to 0. They are not
useful tangent vectors on Σ and Λ because we can’t use them to compute the angle between
these curves. To get nonzero tangent vectors, we have to reparametrize the curves Σ and Λ.
The reason why the velocity vectors at t = 0 are equal to 0 is because of the factor t2 in the
numerator. We thus reparametrize the curve by s = t2. We get

Σ1(s) =
a2s

a
√
s− 3i

, Λ1(s) =
s√
s− 3i

Note that the shape of the curve Σ1 is the same as Σ. The only difference is the parametriza-
tion. Similarly, Λ1 and Λ differ from each other only by parametrization, not the shape. The
velocity vectors on Σ1 and Λ1 at t = 0 are

Σ
′

1(0) =
a2(a
√
s− 3i)− a2s a

2
√
s

(a
√
s− 3i)

2

∣∣∣∣
s=0

=
a2

−3i
,

Λ
′

1(0) =
1

−3i
.

In Mathematica, we can draw these two curves with their velocity vectors at the origin
as follows (Figure 3).

f[z_] := z^2/(z - 3*I)

w0 = f[z0]

a = 1 + I

Sigma1[s_] := a^2*s/(a*Sqrt[s] - 3*I)

Lambda1[s_] := s/(Sqrt[s] - 3*I)

v1 = D[Sigma1[s], s] /. s -> 0

v2 = D[Lambda1[s], s] /. s -> 0

ParametricPlot[{ReIm[Sigma1[s]], ReIm[Lambda1[s]]}, {s, 0, 3},

PlotRange -> {{-1, 1}, {-0.5, 1}},

Epilog -> {Arrow[{ReIm[w0], ReIm[w0] + ReIm[v1]}],

Arrow[{ReIm[w0], ReIm[w0] + ReIm[v2]}]}]

We see from the graph that the angle between Σ1 and Λ1 is π/2, whereas the angle
between σ and λ is π/4. This experiment confirms our guess that f doubles the angles
between two curves that meet at the origin.

Exercise 5. Consider the function f(z) = z3

(a) Sketch the image of the vertical line (`): x = 1 under f . Note that the image curve
intersects itself.

f[z_] := z^3

ParametricPlot[ReIm[f[1 + t*I]], {t, -3, 3},

AspectRatio -> Automatic, AxesOrigin -> {0, 0}]
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Figure 3:

(b) Find two distinct points z1 and z2 on (`) such that f(z1) = f(z2).

Answer: Let z1 = r1e
iθ1 and z2 = r2e

iθ2 where θ1 = Argz1 ∈ (−π
2
, π
2
) and θ2 = Argz2 ∈

(−π
2
, π
2
). Without loss of generality, we may assume that θ1 ≥ θ2. Then(

z1
z2

)3

= 1 ⇐⇒
(
r1
r2

)3

ei3(θ1−θ2) = 1

so
r1
r2

= 1 or r1 = r2

and

θ1 − θ2 =
2kπ

3
, k ∈ Z

We can see from Figure 4 that the angle between z1 and z2 cannot exceed π. Thus,
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θ1 − θ2 =
2π

3

Figure 4:

Furthermore, because r1 = r2, the triangle with vertices at 0, z1, z2 is an isosceles triangle.
This implies

θ1 = −θ2
Therefore,

z1 = 2ei
π
3 = 1 + i

√
3, z2 = 2e−i

π
3 = 1− i

√
3

(c) Find f ′(z1) and f ′(z2).

Answer:
f ′(z1) = 3z21 = −6 + 6

√
3i

and

f ′(z2) = 3z22 = −6− 6
√

3i

(d) Find the angle at which the image curve intersects itself.
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Answer: The angle at the intersection of the curve is

θ = Arg(f ′(z2))− Arg(f ′(z1)) = −2π

3
− 2π

3
= −4π

3

which is 2π/3 in modulo 2π.
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