Homework 5 Due 5/15/2020

Before starting this homework, please take a look at the supplemental material called "**Discontinuity** and **Angles**" posted on Canvas and course website. *Make sure to include the Mathematica codes* and figures you use and some brief comments.

1. Let

$$f(z) = \left(\frac{z+1}{z-1}\right)^i$$

- (a) Determine the region of continuity of f. That is, find all $z \in \mathbb{C}$ where f is continuous.
- (b) Pick a point where f is discontinuous. Call it z_0 . Use Mathematica to describe how f jumps at z_0 .

Hint: draw a curve that passes through z_0 . Draw the image of this curve under f.

- 2. Determine the region where each of the following function is differentiable. Find the derivative of the function. Determine the region where the function is holomorphic.
 - (a) $f(z) = \bar{z}^2 z$
 - (b) $f(z) = x^2y + x + i(xy^2 x + y)$ where z = x + iy.
 - (c) $f(z) = i^z$ (principal logarithm is used)
- 3. Determine the region where the function $f(z) = \tan z$ is differentiable. Then show that $f'(z) = 1 + \tan^2 z$ in this region.
- 4. Let $f(z) = \frac{z^2}{z-3i}$ and $z_0 = 0$. Use Mathematica to show that f is not angle-preserving at z_0 . What does f do to the angles at z_0 instead?
- 5. Consider the function $f(z) = z^3$.
 - (a) Sketch the image of the vertical line (ℓ) : x = 1 under f. Note that the image curve intersects itself.
 - (b) Find two distinct points z_1 and z_2 on (ℓ) such that $f(z_1) = f(z_2)$. *Hint:* $(\frac{z_1}{z_2})^3 = 1$. Find Arg z_1 and Arg z_2 . Then use geometry to determine z_1 and z_2 .
 - (c) Find $f'(z_1)$ and $f'(z_2)$.
 - (d) Find the angle at which the image curve intersects itself. Round to 4 digits after the decimal point.