MTH 483/583 Complex Variables - Homework 6

Solution Key

Spring 2020

Exercise 1. Let G be an open subset of \mathbb{C}. Let $f: G \rightarrow \mathbb{C}$ be a holomorphic function. Let $a \in G$. Consider the function

$$
g(z)=\left\{\begin{array}{rll}
\frac{f(z)-f(a)}{z-a} & \text { if } & z \neq a \\
f^{\prime}(a) & \text { if } & z=a
\end{array}\right.
$$

(a) Show that g is a continuous function on G.

Answer: For $z \in G, z \neq a$, the function $g(z)=\frac{f(z)-f(a)}{z-a}$ is a multiplication of two continuous functions, namely, $f(z)-f(a)$ and $\frac{1}{z-a}$. Thus g is also continuous at any $z \neq a$. Let us show the continuity of g at $z=a$. We have

$$
\lim _{z \rightarrow a} g(z)=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}=f^{\prime}(a)=g(a)
$$

Therefore, g is continuous at $z=a$. In conclusion, g is continuous on G.
(b) Let us write f in standard form as $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$. Write g in standard form.

Answer: We may assume $a=0$ for simplicity.
Let us simply write $u(x, y)$ and $u(0,0)$ as u and u_{0} respectively. Similarly for v and v_{0}. For $z \neq 0$, we have

$$
\begin{aligned}
g(z)= & \frac{f(z)-f(0)}{z}=\frac{(u+i v)-\left(u_{0}+i v_{0}\right)}{x+i y}=\frac{\left(u-u_{0}\right)+i\left(v-v_{0}\right)}{x+i y} \\
& =\frac{x\left(u-u_{0}\right)+y\left(v-v_{0}\right)}{x^{2}+y^{2}}+i \frac{x\left(v-v_{0}\right)-y\left(u-u_{0}\right)}{x^{2}+y^{2}}
\end{aligned}
$$

For $z=0$,

$$
g(a)=g(0)=f^{\prime}(0)=\left(\partial_{x} u\right)(0,0)+i\left(\partial_{x} v\right)(0,0)
$$

Therefore,

$$
g(z)=\left\{\begin{aligned}
\frac{x\left(u-u_{0}\right)+y\left(v-v_{0}\right)}{x^{2}+y^{2}}+i \frac{x\left(v-v_{0}\right)-y\left(u-u_{0}\right)}{x^{2}+y^{2}} & z \neq 0 \\
\left(\partial_{x} u\right)(0,0)+i\left(\partial_{x} v\right)(0,0) & z=0
\end{aligned}\right.
$$

(c) Show that g is holomorphic on G.

Answer: Because $f(z)-f(a)$ is differentiable on G and $\frac{1}{z-a}$ is differentiable on $G \backslash\{0\}$, the product $\frac{f(z)-f(a)}{z-a}$ is differentiable on $G \backslash\{0\}$. Therefore, g is differentiable at every $z_{0} \in G$, $z_{0} \neq 0$.

We now show that g is differentiable at a. Let us assume $f(a)=a=0$ for simplicity. We will show that the Cauchy-Riemann equations are satisfied at (0,0). Based on the formula we obtained in part (b), $g(z)=U(x, y)+i V(x, y)$ where

$$
\begin{aligned}
& U(x, y)=\left\{\begin{array}{rr}
\frac{x u(x, y)+y v(x, y)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
\left(\partial_{x} u\right)(0,0), & (x, y)=(0,0)
\end{array}\right. \\
& V(x, y)=\left\{\begin{array}{rr}
\frac{x v(x, y)-y u(x, y)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
\left(\partial_{x} v\right)(0,0), & (x, y)=(0,0)
\end{array}\right.
\end{aligned}
$$

Then

$$
\begin{align*}
\partial_{x} U(0,0) & =\lim _{h \rightarrow 0} \frac{U(h, 0)-U(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{u(h, 0)}{h}-\partial_{x} u(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{u(h, 0)-h \partial_{x} u(0,0)}{h^{2}} \tag{1}\\
& =\lim _{h \rightarrow 0} \frac{\partial_{x} u(h, 0)-\partial_{x} u(0,0)}{2 h} \quad \text { (L'Hopital Rule) } \\
& =\frac{1}{2} \partial_{x x} u(0,0)
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\partial_{y} V(0,0) & =\lim _{h \rightarrow 0} \frac{V(0, h)-V(0,0)}{h}=\lim _{h \rightarrow 0} \frac{-\frac{u(0, h)}{h}-\partial_{x} v(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-u(0, h)+h \partial_{y} u(0,0)}{h^{2}} \tag{2}\\
& =\lim _{h \rightarrow 0} \frac{-\partial_{y} u(0, h)+\partial_{y} u(0,0)}{2 h} \quad \text { (L'Hopital Rule) } \\
& =-\frac{1}{2} \partial_{y y} u(0,0)
\end{align*}
$$

According to Problem 4, $\partial_{x x} u=-\partial_{y y} u$. Thus, $\partial_{x} U(0,0)=\partial_{y} V(0,0)$. Similarly,

$$
\begin{align*}
\partial_{y} U(0,0) & =\lim _{h \rightarrow 0} \frac{U(0, h)-U(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{v(0, h)}{h}-\partial_{x} u(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{v(0, h)-h \partial_{y} v(0,0)}{h^{2}}, \quad \text { (Cauchy-Riemann eqn's for u and v) } \tag{3}\\
& =\lim _{h \rightarrow 0} \frac{\partial_{y} v(0, h)-\partial_{y} v(0,0)}{2 h} \quad \text { (L'Hopital Rule) } \\
& =\frac{1}{2} \partial_{y y} v(0,0)
\end{align*}
$$

and

$$
\begin{align*}
\partial_{x} V(0,0) & =\lim _{h \rightarrow 0} \frac{V(h, 0)-V(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{v(h, 0)}{h}-\partial_{x} v(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{v(h, 0)-h \partial_{x} v(0,0)}{h^{2}} \tag{4}\\
& =\lim _{h \rightarrow 0} \frac{\partial_{x} v(h, 0)-\partial_{x} v(0,0)}{2 h} \quad \text { (L'Hopital Rule) } \\
& =\frac{1}{2} \partial_{x x} v(0,0)
\end{align*}
$$

According to Problem 4, $\partial_{x x} v=-\partial_{y y} v$. Thus, $\partial_{y} U(0,0)=-\partial_{x} V(0,0)$.
So g is differentiable at 0 . We have showed that g is differentiable everywhere in G. We now explain why g is holomorphic on G.

For each $z_{0} \in G$, there is an open disk $D_{r}\left(z_{0}\right)$ centered at z_{0} with radius r that lies entirely in G. This is because G is an open set. We know that g is differentiable everywhere in this disk. Thus, g is holomorphic at z_{0}. Because z_{0} is arbitrary in G, we conclude that g is holomorphic on G.

Exercise 2. Let G be an open connected subset of \mathbb{C}. Let $f: G \rightarrow \mathbb{C}$ be a holomorphic map on G. Suppose $f^{\prime}(z)=0$ for all $z \in G$. We want to show that f is a constant function. Follow the steps:
(a) Write f in standard form $f(z)=u(x, y)+i v(x, y)$. Show that $u_{x}=u_{y}=v_{x}=v_{y}=0$ in G.

Answer: We know that $f^{\prime}(z)=u_{x}+i v_{x}$. Therefore, $u_{x}=v_{x}=0$ everywhere in G. By Cauchy-Riemann equations, $u_{y}=-v_{x}=0$ and $v_{y}=u_{x}=0$.
(b) Show that u and v are constant functions.

Answer: Fix $z_{0}=x_{0}+i y_{0} \in G$. Let $w=a+i b$ be an arbitrary point in G. Since G is open and connected, there is a rectilinear curve lies entirely in G that starts at z_{0} and ends at w. This rectilinear curve consists of horizontal and vertical line segments, let us denote the joint points by $z_{k}=x_{k}+i y_{k}, k=0,1, \ldots, n$, where $z_{n}=a+i b$.(See the graph below)

In other words, each line segment $\left[z_{k}, z_{k+1}\right], k=0,1, \ldots n-1$, is either a horizontal or vertical line.

If the segment that connect z_{k} to z_{k+1} is horizontal then $u\left(x_{k+1}, y_{k+1}\right)=u\left(x_{k}, y_{k}\right)$ because $u_{x}=0$. If the segment that connect z_{k} to z_{k+1} is vertical then $u\left(x_{k+1}, y_{k+1}\right)=u\left(x_{k}, y_{k}\right)$ because $u_{y}=0$. Hence,

$$
u\left(x_{k+1}, y_{k+1}\right)=u\left(x_{k}, y_{k}\right)
$$

Since this holds for all $k \in\{0,1,2, \ldots, n\}$, we have

$$
u\left(x_{0}, y_{0}\right)=u\left(x_{1}, y_{1}\right)=\cdots=u\left(x_{n}, y_{n}\right)=u(a, b)
$$

Similarly, $v\left(x_{0}, y_{0}\right)=v(a, b)$
Finally, since this holds for arbitrary $w=a+i b \in G$, we conclude that u and v are constant functions on G.
(c) Is f necessarily a constant function if the condition " G is a connected subset" is dropped?

Answer: Let

$$
A:=\{z=x+i y: x<-1\}
$$

and

$$
B:=\{z=x+i y: x>1\}
$$

Define $G:=A \cup B$. See Figure 2,

```
RegionPlot[x < -1 || x > 1, {x, -3, 3}, {y, -2, 2},
    AspectRatio -> Automatic]
```


Figure 1:

A point in set A cannot be connected to a point in set B by a path that lies in G. Therefore, G is not connected.

Consider the function

$$
f(z)=\left\{\begin{array}{lll}
0 & \text { if } & z \in A \\
1 & \text { if } & z \in B
\end{array}\right.
$$

We see that $f^{\prime}(z)=0$. However, f is not constant in G (although it is constant in A and B).

Exercise 3. Consider $f(z)=\frac{1}{z}$. We know that $F(z)=\log z$ is an antiderivative of f. To be more precisely, F is an antiderivative of f in the region $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. In this problem, we will see that f has many other antiderivatives (differing f by a non-constant) in other regions.
(a) Show that any antiderivative of f in $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$ must be $F(z)+c$ where c is a complex constant.

Answer: Let $G(z)$ be any antiderivative of f in $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. Note that $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$ is open and connected and G is holomorphic on $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. Then

$$
(G-F)^{\prime}(z)=G^{\prime}(z)-F^{\prime}(z)=\frac{1}{z}-\frac{1}{z}=0
$$

Since $G(z)-F(z)$ is also holomorphic on $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$, Problem 2 tells us that $G(z)-F(z)$ is constant, say, c. Thus, $G(z)-F(z)=c$ or $G(z)=F(z)+c$.
(b) For $\theta \in(-\pi, \pi]$, denote $G(z)=\log \left(e^{i \theta} z\right)$. Describe the region of continuity of G. Show that $G^{\prime}=f$ in this region. Is the difference $G-F$ a constant function?

Answer: $\log \left(e^{i \theta} z\right)$ is discontinuous at those z such that

$$
e^{i \theta} z \in \mathbb{R}_{\leq 0}
$$

write $z=r e^{i \beta}$, then

$$
e^{i \theta} z=r e^{i(\theta+\beta)} \in \mathbb{R}_{\leq 0} \quad \Longleftrightarrow \quad \theta+\beta=\pi(\bmod 2 \pi)
$$

Thus, G is continuous everywhere except on the ray $\operatorname{Arg} z=\pi-\theta$ (the green line in Figure 2):

Figure 2:
Using differentiation rule

$$
G^{\prime}(z)=\left(\log \left(e^{i \theta} z\right)\right)^{\prime}=\frac{1}{e^{i \theta} z} e^{i \theta}=\frac{1}{z}
$$

which shows that $G^{\prime}=f$ in the region $\mathbb{C} \backslash\left\{z=r e^{i \beta}: \beta=\pi-\theta\right\}$.
$G-F$ is a holomorphic function in the region $\Omega=A \cup B$ as shown in Figure 2. It is not a constant function on Ω unless $\theta=0$. To see this, let us take $\theta=\pi$ for example.

For $z_{1}=e^{-i \frac{\pi}{2}}$, we have

$$
\log \left(e^{i \theta} z_{1}\right)=\log \left(e^{i \frac{\pi}{2}}\right)=i \frac{\pi}{2}
$$

so $G\left(z_{1}\right)-F\left(z_{1}\right)=i \frac{\pi}{2}-i \frac{-\pi}{2}=i \pi$.
For $z_{2}=e^{-i \frac{3 \pi}{2}}$, we have

$$
\log \left(e^{i \theta} z_{2}\right)=\log \left(e^{-i \frac{\pi}{2}}\right)=-i \frac{\pi}{2}
$$

so $G\left(z_{2}\right)-F\left(z_{2}\right)=-i \frac{\pi}{2}-i \frac{\pi}{2}=-i \pi$.
Thus, $G-F$ is not a constant function on Ω. However, it is a constant function on A and on B. Note that Ω is not a connected set because it is impossible to connect a point in A to a point in B by any continuous path. This is another example (in addition to the example given in Problem 2, Part (c)) to show that a function whose derivative is equal to zero on a disconnected set may not be a constant function.
(c) Show that f has no antiderivatives in the region $\mathbb{C} \backslash\{0\}$.

Answer: Suppose by contradiction that there is an antiderivative of f in the region $\mathbb{C} \backslash\{0\}$. Let us call it $H(z)$. We have $H^{\prime}(z)=f(z)$ for all $z \in \mathbb{C} \backslash\{0\}$.

In particular, $H(z)$ is an antiderivative of $f(z)$ in the region $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. According to Part (a), $H(z)=F(z)+c$ in the region $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. Because F is discontinuous on the negative real line (jumping by $2 \pi i$ across the negative real line), so must be H. On the other hand, H is holomorphic everywhere on $\mathbb{R}_{<0}$, so it must be continuous everywhere on $\mathbb{R}_{<0}$. This is a contradiction.

A function $u(x, y)$ is said to be harmonic in a region G if the Laplacian $\Delta u=u_{x x}+u_{y y}$ is equal to zero for all $(x, y) \in G$.

Exercise 4. Let $f(z): G \rightarrow \mathbb{C}$ be a holomorphic function on G. Show that the real part and imaginary part of f are harmonic functions.

Answer: Write $f(z)=u(x, y)+i v(x, y)$.
Since f is differentiable in G, the Cauchy-Riemann equations holds:

$$
u_{x}=v_{y} ; \quad u_{y}=-v_{x}
$$

Thus,

$$
u_{x x}+u_{y y}=v_{x y}+\left(-v_{y x}\right)=0
$$

and

$$
v_{x x}+v_{y y}=-u_{x y}+u_{y x}=0
$$

Exercise 5. Find an entire function f such that $f(0)=1-2 i$ and the real part of f is

$$
u(x, y)=e^{-y} \cos (x)-y
$$

Answer: Let $v(x, y)$ be the imaginary part of $f(z)$. Since f is entire, it must satisfy the Cauchy-Riemann equations. Thus,

$$
\begin{equation*}
v_{x}=-u_{y}=e^{-y} \cos (x)+1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{y}=u_{x}=-e^{-y} \sin (x) \tag{6}
\end{equation*}
$$

Integrating (5) with respect to x, we get

$$
v(x, y)=e^{-y} \sin (x)+x+C(y)
$$

Differentiate both sides with respect to y :

$$
v_{y}=-e^{-y} \sin (x)+C^{\prime}(y)
$$

Comparing this equation with (6), we get $C^{\prime}(y)=0$. Thus, $C(y)=c$ for some constant c. We obtain

$$
v(x, y)=e^{-y} \sin (x)+x+c
$$

To find c, we use the fact that $f(0)=1-2 i$. This equation implies $c=-2$.
Therefore,

$$
v(x, y)=e^{-y} \sin (x)+x-2
$$

So,

$$
f(z)=\left(e^{-y} \cos (x)-y\right)+i\left(e^{-y} \sin (x)+x-2\right) .
$$

If one wishes to obtain a neat formula in terms of z, one can proceed as follows:

$$
\begin{aligned}
f(z) & =e^{-y}(\cos x+i \sin x)+(-y+i x)-2 i \\
& =e^{-y+i x}+(-y+i x)-2 i \\
& =e^{i(x+i y)}+i(x+i y)-2 i \\
& =e^{i z}+i z-2 i .
\end{aligned}
$$

The above procedure is simply cosmetic!

