MTH 483/583 Complex Variables — Homework 6

Solution Key
Spring 2020

Exercise 1. Let GG be an open subset of C. Let f : G — C be a holomorphic function. Let
a € G. Consider the function

f(z)—f(a) if z;ﬁa,
g(z) = z—a
f'(a) if z=a.
(a) Show that g is a continuous function on G.
f(Z)=f(a)

Answer: For z € G, z # a, the function g(z) = is a multiplication of two continu-

1

zZ—a
Thus g is also continuous at any z # a. Let us

ous functions, namely, f(z) — f(a) and —.
show the continuity of g at z = a. We have

f(z) = fla)

lim g(z) = lim = f'(a) = g(a).
z—a z—a z—aQa
Therefore, g is continuous at z = a. In conclusion, ¢ is continuous on G. [

(b) Let us write f in standard form as f(z) = u(z,y) + w(z,y) where z = x 4 iy. Write ¢
in standard form.

Answer: We may assume a = 0 for simplicity.

Let us simply write u(x,y) and u(0,0) as u and ug respectively. Similarly for v and wy.
For z # 0, we have

f(z)=f(0)  (u+iv) — (ug+ivg) (u—1ug)+i(v—wp)

9(2) = z - T+ - T+ 1y
~z(u—wug) +y(v—wo) . x(v—wy) —y(u—up)
= +1

132 +y2 .Z'Q +y2
For z =0,
g9(a) = g(0) = f'(0) = (9,u)(0,0) + 14 (0,v)(0,0)
Therefore,



x(u—up) +y(v—19) . x(v—19) —y(u—1up)
g(z) = A
(0,u)(0,0) + i (9,v)(0,0) z=0.

(c¢) Show that g is holomorphic on G.

Answer: Because f(z) — f(a) is differentiable on G and —L is differentiable on G\{0}, the

product W is differentiable on G\{0}. Therefore, g is differentiable at every zy € G,
20 # 0.

We now show that ¢ is differentiable at a. Let us assume f(a) = a = 0 for simplicity. We
will show that the Cauchy-Riemann equations are satisfied at (0,0). Based on the formula
we obtained in part (b), g(z) = U(x,y) + iV (z,y) where

zu(z,y) +yv(z,y)
Ule.y) = s , (z,y) #(0,0)
(aa:u) (07 0)7 (l‘, y) = (07 O)'
l"U(l‘,y) — yu<x7y) (.T y) ?é (0 0)
Viz,y) = z? + y? C ’
((%U) (07 O)? (IB, y) = (Oa O)'

Then
— uh0) _ 5 (0,0
h—0 ]’L h—0
o u(h,0) = hd,u(0,0)
= fm h2 "
o Ouu(h,0) — 0u(0,0)
= }llli% 5% (L’Hopital Rule)
1
On the other hand,
V0, = V(0,00 =3 —9,0(0,0)
o —u(0,h) + hd,u(0,0)
= fm h2 )
o =0u(0,h) +0,u(0,0)
= ,111{% 5 (L’Hopital Rule)
1
= 5 yyU(0,0)



According to Problem 4, 0,,u = —0,,u. Thus, 0,U(0,0) = 9,V (0,0). Similarly,

— U(O,h) _ a O O
0,0(0.0) = tim YO U0 _ o 75 (0, 0)
h—0 h h—0 h

h) —h
= lim 0(0, 1) = h9,v(0, 0), (Cauchy-Riemann eqn’s for u and v)
h—0 h? (3)

. 0yv(0,h) — 9,v(0,0) s

= }llli% o7 (L’Hopital Rule)
1

= 5 yy’U(O, 0)

and

2,V/(0,0) = lim V(h,0) . V(0,0) _ lny “52 — 9,0(0,0)
_ }lg% v(h,0) —hf;(?mv(o, 0) .
= }Zli% Oovll, O)Q—h&Ev(O, 0) (L’Hopital Rule)
1
= iﬁmv((), 0)

According to Problem 4, 0,,v = —0,,v. Thus, 9,U(0,0) = -0,V (0,0).

So g is differentiable at 0. We have showed that g is differentiable everywhere in G. We
now explain why ¢ is holomorphic on G.

For each zy € @G, there is an open disk D,(z) centered at zp with radius r that lies
entirely in G. This is because G is an open set. We know that ¢ is differentiable everywhere
in this disk. Thus, g is holomorphic at z;. Because 2, is arbitrary in G, we conclude that g
is holomorphic on G.

O

Exercise 2. Let GG be an open connected subset of C. Let f : G — C be a holomorphic
map on G. Suppose f'(z) =0 for all z € G. We want to show that f is a constant function.
Follow the steps:

(a) Write f in standard form f(z) = u(x, y)+iv(x,y). Show that u, = u, = v, =v, =0in G.

Answer: We know that f'(z) = u, + tv,. Therefore, u, = v, = 0 everywhere in G. By
Cauchy-Riemann equations, u, = —v, = 0 and v, = u, = 0.
]

(b) Show that u and v are constant functions.



Answer: Fix zg = xo +iyg € G. Let w = a + ib be an arbitrary point in G. Since G is
open and connected, there is a rectilinear curve lies entirely in G that starts at zy and ends
at w. This rectilinear curve consists of horizontal and vertical line segments, let us denote
the joint points by zp = x + iyx, k = 0,1, ...,n, where z, = a + ib.(See the graph below)

In other words, each line segment [zx, zx11], & = 0,1,...n — 1, is either a horizontal or
vertical line.
If the segment that connect 2y, to zx11 is horizontal then u(xgi1, Y1) = u(zk, yx) because
u, = 0. If the segment that connect zj to zx4; is vertical then w(zyi1,yr+1) = u(zk, yx)
because u, = 0. Hence,
U(Thi1, Yer1) = w(Tr, Yr)

Since this holds for all £ € {0,1,2,...,n}, we have

u(o, Yo) = u(x1,y1) = - = u(xn, yn) = u(a,b)

Similarly, v(zo,y0) = v(a,b)
Finally, since this holds for arbitrary w = a 4+ ib € G, we conclude that v and v are
constant functions on G. [

(c) Is f necessarily a constant function if the condition ” G is a connected subset” is dropped?

Answer: Let
A={z=0+iy: o< -1}
and

B={s=x+iy:z>1}

Define G := AU B. See [Figure 2|
RegionPlot[x < -1 || x > 1, {x, -3, 3}, {y, -2, 2},
AspectRatio -> Automatic]
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Figure 1:

A point in set A cannot be connected to a point in set B by a path that lies in G. Therefore,
G is not connected.
Consider the function

0 if z€ A

f(z)—{ 1 if 2€B
We see that f'(z) = 0. However, f is not constant in G (although it is constant in A and
B). O

Exercise 3. Consider f(z) = 2. We know that F(z) = Log z is an antiderivative of f. To
be more precisely, F' is an antiderivative of f in the region C \ R<y. In this problem, we
will see that f has many other antiderivatives (differing f by a non-constant) in other regions.

(a) Show that any antiderivative of f in C\ R<y must be F(z) + ¢ where ¢ is a complex
constant.

Answer: Let G(z) be any antiderivative of f in C\ R<. Note that C \ R« is open and
connected and G is holomorphic on C \ R<y. Then

1 1
(G—=F)(2)=G'(z) = F'(2) = P 0
Since G(z) — F(z) is also holomorphic on C \ R<, Problem 2 tells us that G(z) — F(2)
is constant, say, ¢. Thus, G(z) — F(z2) = c or G(z) = F(z) + c.
[

(b) For 6 € (—7, 7], denote G(z) = Log (e??z). Describe the region of continuity of G. Show
that G’ = f in this region. Is the difference G — F a constant function?

Answer: Log(e?z) is discontinuous at those z such that

€ZQZ S R§0

write z = re’®, then



V2 =1 cRyy = 6O+pB=n (mod2n)

Thus, G is continuous everywhere except on the ray Argz = m — 0 (the green line in

Figure 2):

A
AT =0
LA
B
Figure 2:
Using differentiation rule

. 1 . 1
G'(2) = (Log(e?2)) = ——¢ = =
() = (Log(e"2) = e = -

which shows that G’ = f in the region C\ {z =re" : g =7 —6}.
G — F is a holomorphic function in the region Q@ = AU B as shown in [Figure 2 It is not
a constant function on €2 unless 6 = 0. To see this, let us take § = 7 for example.

T
For z; = e™"2, we have

Log(e”z) = Log(e'?) = zg

50 G(z1) — F(z) =i5 — i = iT.
For zy = ¢35, we have

Log(e”z,) = Log(e™"2) = —ig

so G(z2) — F(z) = —i§ —i5 = —i.

Thus, G — F is not a constant function on §2. However, it is a constant function on A
and on B. Note that €2 is not a connected set because it is impossible to connect a point
in A to a point in B by any continuous path. This is another example (in addition to the
example given in Problem 2, Part (c¢)) to show that a function whose derivative is equal to

zero on a disconnected set may not be a constant function.

(c) Show that f has no antiderivatives in the region C\ {0}.

Answer: Suppose by contradiction that there is an antiderivative of f in the region C\ {0}.
Let us call it H(z). We have H'(z) = f(z) for all z € C\ {0}.



In particular, H(z) is an antiderivative of f(z) in the region C \ R<g. According to Part
(a), H(z) = F(2) + ¢ in the region C\ R<,. Because F is discontinuous on the negative real
line (jumping by 27 across the negative real line), so must be H. On the other hand, H
is holomorphic everywhere on R, so it must be continuous everywhere on R_y. This is a
contradiction.

]

A function u(z,y) is said to be harmonic in a region G if the Laplacian Au = g, + ty,
is equal to zero for all (z,y) € G.

Exercise 4. Let f(z) : G — C be a holomorphic function on G. Show that the real part
and imaginary part of f are harmonic functions.

Answer: Write f(z) = u(z,y) + iv(z,y).
Since f is differentiable in G, the Cauchy-Riemann equations holds:
Uy = Vy; Uy = —Uy

Thus,

Uy + Uyy = VUgy + (—Vyy) =0

and
Vgg + Vyy = —Ugy + Uy, =0

Exercise 5. Find an entire function f such that f(0) = 1 — 2¢ and the real part of f is
u(z,y) = e ¥ cos(x) —y
Answer: Let v(z,y) be the imaginary part of f(z). Since f is entire, it must satisfy the
Cauchy-Riemann equations. Thus,
vy = —uy = e Ycos(x) + 1 (5)

and
vy = u, = —e Ysin(z) (6)

Integrating with respect to x, we get
v(z,y) =e Ysin(z) + x + C(y).
Differentiate both sides with respect to y:
v, = —e Ysin(x) + C'(y).

Comparing this equation with (), we get C’(y) = 0. Thus, C(y) = ¢ for some constant c.
We obtain
v(z,y) = e ?sin(x) +z+ ¢

7



To find ¢, we use the fact that f(0) = 1 — 2. This equation implies ¢ = —2.
Therefore,

v(z,y) = e ¥sin(zr) + & — 2
So,
f(z) = (e ¥cos(z) —y) +i (e ¥sin(z) + z —2) .
If one wishes to obtain a neat formula in terms of z, one can proceed as follows:
f(z) = e Y(cosx +isinx)+ (—y +ix) — 2i
= eyt (—y +ix) — 2i
= W (x4 iy) — 2i

= ¥ +iz— 2i.

The above procedure is simply cosmetic!



