
MTH 483/583 Complex Variables – Homework 6

Solution Key

Spring 2020

Exercise 1. Let G be an open subset of C. Let f : G→ C be a holomorphic function. Let
a ∈ G. Consider the function

g(z) =


f(z)− f(a)

z − a
if z 6= a,

f ′(a) if z = a.

(a) Show that g is a continuous function on G.

Answer: For z ∈ G, z 6= a, the function g(z) = f(z)−f(a)
z−a is a multiplication of two continu-

ous functions, namely, f(z)− f(a) and 1
z−a . Thus g is also continuous at any z 6= a. Let us

show the continuity of g at z = a. We have

lim
z→a

g(z) = lim
z→a

f(z)− f(a)

z − a
= f ′(a) = g(a).

Therefore, g is continuous at z = a. In conclusion, g is continuous on G.

(b) Let us write f in standard form as f(z) = u(x, y) + iv(x, y) where z = x + iy. Write g
in standard form.

Answer: We may assume a = 0 for simplicity.

Let us simply write u(x, y) and u(0, 0) as u and u0 respectively. Similarly for v and v0.
For z 6= 0, we have

g(z) =
f(z)− f(0)

z
=

(u+ iv)− (u0 + iv0)

x+ iy
=

(u− u0) + i(v − v0)
x+ iy

=
x(u− u0) + y(v − v0)

x2 + y2
+ i

x(v − v0)− y(u− u0)
x2 + y2

For z = 0,

g(a) = g(0) = f ′(0) = (∂xu)(0, 0) + i (∂xv)(0, 0)

Therefore,
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g(z) =


x(u− u0) + y(v − v0)

x2 + y2
+ i

x(v − v0)− y(u− u0)
x2 + y2

z 6= 0

(∂xu)(0, 0) + i (∂xv)(0, 0) z = 0.

(c) Show that g is holomorphic on G.

Answer: Because f(z)− f(a) is differentiable on G and 1
z−a is differentiable on G\{0}, the

product f(z)−f(a)
z−a is differentiable on G\{0}. Therefore, g is differentiable at every z0 ∈ G,

z0 6= 0.

We now show that g is differentiable at a. Let us assume f(a) = a = 0 for simplicity. We
will show that the Cauchy–Riemann equations are satisfied at (0, 0). Based on the formula
we obtained in part (b), g(z) = U(x, y) + iV (x, y) where

U(x, y) =


xu(x, y) + yv(x, y)

x2 + y2
, (x, y) 6= (0, 0)

(∂xu)(0, 0), (x, y) = (0, 0).

V (x, y) =


xv(x, y)− yu(x, y)

x2 + y2
, (x, y) 6= (0, 0)

(∂xv)(0, 0), (x, y) = (0, 0).

Then

∂xU(0, 0) = lim
h→0

U(h, 0)− U(0, 0)

h
= lim

h→0

u(h,0)
h
− ∂xu(0, 0)

h

= lim
h→0

u(h, 0)− h∂xu(0, 0)

h2

= lim
h→0

∂xu(h, 0)− ∂xu(0, 0)

2h
(L’Hopital Rule)

=
1

2
∂xxu(0, 0)

(1)

On the other hand,

∂yV (0, 0) = lim
h→0

V (0, h)− V (0, 0)

h
= lim

h→0

−u(0,h)
h
− ∂xv(0, 0)

h

= lim
h→0

−u(0, h) + h∂yu(0, 0)

h2

= lim
h→0

−∂yu(0, h) + ∂yu(0, 0)

2h
(L’Hopital Rule)

= −1

2
∂yyu(0, 0)

(2)
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According to Problem 4, ∂xxu = −∂yyu. Thus, ∂xU(0, 0) = ∂yV (0, 0). Similarly,

∂yU(0, 0) = lim
h→0

U(0, h)− U(0, 0)

h
= lim

h→0

v(0,h)
h
− ∂xu(0, 0)

h

= lim
h→0

v(0, h)− h∂yv(0, 0)

h2
, (Cauchy-Riemann eqn’s for u and v)

= lim
h→0

∂yv(0, h)− ∂yv(0, 0)

2h
(L’Hopital Rule)

=
1

2
∂yyv(0, 0)

(3)

and

∂xV (0, 0) = lim
h→0

V (h, 0)− V (0, 0)

h
= lim

h→0

v(h,0)
h
− ∂xv(0, 0)

h

= lim
h→0

v(h, 0)− h∂xv(0, 0)

h2

= lim
h→0

∂xv(h, 0)− ∂xv(0, 0)

2h
(L’Hopital Rule)

=
1

2
∂xxv(0, 0)

(4)

According to Problem 4, ∂xxv = −∂yyv. Thus, ∂yU(0, 0) = −∂xV (0, 0).
So g is differentiable at 0. We have showed that g is differentiable everywhere in G. We

now explain why g is holomorphic on G.
For each z0 ∈ G, there is an open disk Dr(z0) centered at z0 with radius r that lies

entirely in G. This is because G is an open set. We know that g is differentiable everywhere
in this disk. Thus, g is holomorphic at z0. Because z0 is arbitrary in G, we conclude that g
is holomorphic on G.

Exercise 2. Let G be an open connected subset of C. Let f : G → C be a holomorphic
map on G. Suppose f ′(z) = 0 for all z ∈ G. We want to show that f is a constant function.
Follow the steps:

(a) Write f in standard form f(z) = u(x, y)+iv(x, y). Show that ux = uy = vx = vy = 0 in G.

Answer: We know that f ′(z) = ux + ivx. Therefore, ux = vx = 0 everywhere in G. By
Cauchy–Riemann equations, uy = −vx = 0 and vy = ux = 0.

(b) Show that u and v are constant functions.
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Answer: Fix z0 = x0 + iy0 ∈ G. Let w = a + ib be an arbitrary point in G. Since G is
open and connected, there is a rectilinear curve lies entirely in G that starts at z0 and ends
at w. This rectilinear curve consists of horizontal and vertical line segments, let us denote
the joint points by zk = xk + iyk, k = 0, 1, ..., n, where zn = a+ ib.(See the graph below)

In other words, each line segment [zk, zk+1], k = 0, 1, ...n − 1, is either a horizontal or
vertical line.

If the segment that connect zk to zk+1 is horizontal then u(xk+1, yk+1) = u(xk, yk) because
ux = 0. If the segment that connect zk to zk+1 is vertical then u(xk+1, yk+1) = u(xk, yk)
because uy = 0. Hence,

u(xk+1, yk+1) = u(xk, yk)

Since this holds for all k ∈ {0, 1, 2, ..., n}, we have

u(x0, y0) = u(x1, y1) = · · · = u(xn, yn) = u(a, b)

Similarly, v(x0, y0) = v(a, b)
Finally, since this holds for arbitrary w = a + ib ∈ G, we conclude that u and v are

constant functions on G.

(c) Is f necessarily a constant function if the condition ”G is a connected subset” is dropped?

Answer: Let
A := {z = x+ iy : x < −1}

and
B := {z = x+ iy : x > 1}

Define G := A ∪B. See Figure 2.

RegionPlot[x < -1 || x > 1, {x, -3, 3}, {y, -2, 2},

AspectRatio -> Automatic]
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Figure 1:

A point in set A cannot be connected to a point in set B by a path that lies in G. Therefore,
G is not connected.

Consider the function

f(z) =

{
0 if z ∈ A
1 if z ∈ B

We see that f ′(z) = 0. However, f is not constant in G (although it is constant in A and
B).

Exercise 3. Consider f(z) = 1
z
. We know that F (z) = Log z is an antiderivative of f . To

be more precisely, F is an antiderivative of f in the region C \ R≤0. In this problem, we
will see that f has many other antiderivatives (differing f by a non-constant) in other regions.

(a) Show that any antiderivative of f in C \ R≤0 must be F (z) + c where c is a complex
constant.

Answer: Let G(z) be any antiderivative of f in C \ R≤0. Note that C \ R≤0 is open and
connected and G is holomorphic on C \ R≤0. Then

(G− F )′(z) = G′(z)− F ′(z) =
1

z
− 1

z
= 0

Since G(z)− F (z) is also holomorphic on C \ R≤0, Problem 2 tells us that G(z)− F (z)
is constant, say, c. Thus, G(z)− F (z) = c or G(z) = F (z) + c.

(b) For θ ∈ (−π, π], denote G(z) = Log (eiθz). Describe the region of continuity of G. Show
that G′ = f in this region. Is the difference G− F a constant function?

Answer: Log(eiθz) is discontinuous at those z such that

eiθz ∈ R≤0
write z = reiβ, then
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eiθz = rei(θ+β) ∈ R≤0 ⇐⇒ θ + β = π (mod 2π)

Thus, G is continuous everywhere except on the ray Argz = π − θ (the green line in
Figure 2):

Figure 2:

Using differentiation rule

G′(z) =
(
Log(eiθz)

)′
=

1

eiθz
eiθ =

1

z

which shows that G′ = f in the region C \
{
z = reiβ : β = π − θ

}
.

G−F is a holomorphic function in the region Ω = A∪B as shown in Figure 2. It is not
a constant function on Ω unless θ = 0. To see this, let us take θ = π for example.

For z1 = e−i
π
2 , we have

Log(eiθz1) = Log(ei
π
2 ) = i

π

2

so G(z1)− F (z1) = iπ
2
− i−π

2
= iπ.

For z2 = e−i
3π
2 , we have

Log(eiθz2) = Log(e−i
π
2 ) = −iπ

2

so G(z2)− F (z2) = −iπ
2
− iπ

2
= −iπ.

Thus, G − F is not a constant function on Ω. However, it is a constant function on A
and on B. Note that Ω is not a connected set because it is impossible to connect a point
in A to a point in B by any continuous path. This is another example (in addition to the
example given in Problem 2, Part (c)) to show that a function whose derivative is equal to
zero on a disconnected set may not be a constant function.

(c) Show that f has no antiderivatives in the region C \ {0}.

Answer: Suppose by contradiction that there is an antiderivative of f in the region C\{0}.
Let us call it H(z). We have H ′(z) = f(z) for all z ∈ C \ {0}.
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In particular, H(z) is an antiderivative of f(z) in the region C \R≤0. According to Part
(a), H(z) = F (z) + c in the region C \R≤0. Because F is discontinuous on the negative real
line (jumping by 2πi across the negative real line), so must be H. On the other hand, H
is holomorphic everywhere on R<0, so it must be continuous everywhere on R<0. This is a
contradiction.

A function u(x, y) is said to be harmonic in a region G if the Laplacian ∆u = uxx +uyy
is equal to zero for all (x, y) ∈ G.

Exercise 4. Let f(z) : G → C be a holomorphic function on G. Show that the real part
and imaginary part of f are harmonic functions.

Answer: Write f(z) = u(x, y) + iv(x, y).
Since f is differentiable in G, the Cauchy-Riemann equations holds:

ux = vy; uy = −vx
Thus,

uxx + uyy = vxy + (−vyx) = 0

and
vxx + vyy = −uxy + uyx = 0

Exercise 5. Find an entire function f such that f(0) = 1− 2i and the real part of f is

u(x, y) = e−y cos(x)− y

Answer: Let v(x, y) be the imaginary part of f(z). Since f is entire, it must satisfy the
Cauchy-Riemann equations. Thus,

vx = −uy = e−y cos(x) + 1 (5)

and
vy = ux = −e−y sin(x) (6)

Integrating (5) with respect to x, we get

v(x, y) = e−y sin(x) + x+ C(y).

Differentiate both sides with respect to y:

vy = −e−y sin(x) + C ′(y).

Comparing this equation with (6), we get C ′(y) = 0. Thus, C(y) = c for some constant c.
We obtain

v(x, y) = e−y sin(x) + x+ c
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To find c, we use the fact that f(0) = 1− 2i. This equation implies c = −2.
Therefore,

v(x, y) = e−y sin(x) + x− 2

So,
f(z) =

(
e−y cos(x)− y

)
+ i
(
e−y sin(x) + x− 2

)
.

If one wishes to obtain a neat formula in terms of z, one can proceed as follows:

f(z) = e−y(cosx+ i sinx) + (−y + ix)− 2i

= e−y+ix + (−y + ix)− 2i

= ei(x+iy) + i(x+ iy)− 2i

= eiz + iz − 2i.

The above procedure is simply cosmetic!
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