## Homework 6

Due 5/22/2020

A subset $G \subset \mathbb{C}$ is said to be open if for every $z \in G$ there is a disk $D_{r}(z)$ (centered at $z$ with radius $r>0$ ) that lies entirely in $G$.

1. Let $G$ be an open subset of $\mathbb{C}$. Let $f: G \rightarrow \mathbb{C}$ be a holomorphic function. Let $a \in G$. Consider the function

$$
g(z)=\left\{\begin{array}{rll}
\frac{f(z)-f(a)}{z-a} & \text { if } & z \neq a \\
f^{\prime}(a) & \text { if } & z=a
\end{array}\right.
$$

(a) Show that $g$ is a continuous function on $G$.
(b) Let us write $f$ in standard form as $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$. Write $g$ in standard form. (For the sake of simplicity, you can assume $f(a)=a=0$.)
(c) Show that $g$ is holomorphic on $G$.

Hint: explain why $g$ is differentiable on $D \backslash\{a\}$. Then use Cauchy-Riemann equations to explain why $g$ is differentiable at $a$. (For the sake of simplicity, you can assume $f(a)=a=0$.)

An open subset $G \subset \mathbb{C}$ is said to be connected if for any two points $z_{1}, z_{2} \in G$ there is a rectilinear curve inside $G$ that starts at $z_{1}$ and ends at $z_{2}$. A rectilinear curve is a curve that consists of horizontal and vertical line segments. See the figure.

2. Let $G$ be an open and connected subset of $\mathbb{C}$. Let $f: G \rightarrow \mathbb{C}$ be a holomorphic map on $G$. Suppose $f^{\prime}(z)=0$ for all $z \in G$. We want to show that $f$ is a constant function. Follow the steps:
(a) Write $f$ in standard form $f(z)=u(x, y)+i v(x, y)$. Show that $u_{x}=u_{y}=v_{x}=v_{y}=0$ in $G$.
(b) Show that $u$ and $v$ are constant functions.

Hint: Fix a point $z_{0}=x_{0}+i y_{0}$ in $G$. Let $w=a+i b$ be an arbitrary point in $G$. Explain why $u(a, b)=u\left(x_{0}, y_{0}\right)$. Explain likewise for $v$.
(c) Is $f$ is necessarily a constant function if the condition " $G$ is a connected subset" is removed?
3. Consider $f(z)=\frac{1}{z}$. We know that $F(z)=\log z$ is an antiderivative of $f$. To be more precisely, $F$ is an antiderivative of $f$ in the region $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. In this problem, we will see that $f$ has many other antiderivatives (differing $f$ by a non-constant) in other regions.
(a) Show that any antiderivative of $f$ in $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$ must be $F(z)+c$ where $c$ is a complex constant.
Hint: use Problem 2.
(b) For $\theta \in(-\pi, \pi]$, denote $G(z)=\log \left(e^{i \theta} z\right)$. Describe the region of continuity of $G$. Show that $G^{\prime}=f$ in this region. Is the difference $G-F$ a constant function?
(c) Show that $f$ has no antiderivatives in the region $\mathbb{C} \backslash\{0\}$.

Hint: suppose by contradiction that it has an antiderivative $H$ in this region. Use Part (a) to show that $R(z)=H(z)-F(z)$ is constant on $\mathbb{C} \backslash\{0\}$.

A function $u(x, y)$ is said to be harmonic in a region $G$ if the Laplacian $\Delta u=u_{x x}+u_{y y}$ is equal to zero for all $(x, y) \in G$.
4. Let $f: G \rightarrow \mathbb{C}$ be a holomorphic function on $G$. Show that the real part and imaginary part of $f$ are harmonic functions.
5. Find an entire function $f$ (i.e. $f$ is holomorphic on $\mathbb{C}$ ) such that $f(0)=1-2 i$ and the real part of $f$ is

$$
u(x, y)=e^{-y} \cos (x)-y .
$$

