Homework 6 Due 5/22/2020

A subset $G \subset \mathbb{C}$ is said to be **open** if for every $z \in G$ there is a disk $D_r(z)$ (centered at z with radius r > 0) that lies entirely in G.

1. Let G be an open subset of \mathbb{C} . Let $f : G \to \mathbb{C}$ be a holomorphic function. Let $a \in G$. Consider the function

$$g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & \text{if } z \neq a, \\ f'(a) & \text{if } z = a. \end{cases}$$

- (a) Show that g is a continuous function on G.
- (b) Let us write f in standard form as f(z) = u(x, y) + iv(x, y) where z = x + iy. Write g in standard form. (For the sake of simplicity, you can assume f(a) = a = 0.)
- (c) Show that g is holomorphic on G. *Hint: explain why g is differentiable on D*\{a}. Then use Cauchy–Riemann equations to explain why g is differentiable at a. (For the sake of simplicity, you can assume f(a) = a = 0.)

An open subset $G \subset \mathbb{C}$ is said to be **connected** if for any two points $z_1, z_2 \in G$ there is a rectilinear curve inside G that starts at z_1 and ends at z_2 . A rectilinear curve is a curve that consists of horizontal and vertical line segments. See the figure.

- 2. Let G be an open and connected subset of \mathbb{C} . Let $f : G \to \mathbb{C}$ be a holomorphic map on G. Suppose f'(z) = 0 for all $z \in G$. We want to show that f is a constant function. Follow the steps:
 - (a) Write f in standard form f(z) = u(x, y) + iv(x, y). Show that $u_x = u_y = v_x = v_y = 0$ in G.
 - (b) Show that u and v are constant functions. *Hint:* Fix a point $z_0 = x_0 + iy_0$ in G. Let w = a + ib be an arbitrary point in G. Explain why $u(a, b) = u(x_0, y_0)$. Explain likewise for v.
 - (c) Is f is necessarily a constant function if the condition "G is a connected subset" is removed?
- 3. Consider $f(z) = \frac{1}{z}$. We know that F(z) = Log z is an antiderivative of f. To be more precisely, F is an antiderivative of f in the region $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. In this problem, we will see that f has many other antiderivatives (differing f by a non-constant) in other regions.
 - (a) Show that any antiderivative of f in C\R≤0 must be F(z) + c where c is a complex constant.
 Hint: use Problem 2.

- (b) For $\theta \in (-\pi, \pi]$, denote $G(z) = \text{Log}(e^{i\theta}z)$. Describe the region of continuity of G. Show that G' = f in this region. Is the difference G F a constant function?
- (c) Show that f has no antiderivatives in the region C\{0}. *Hint: suppose by contradiction that it has an antiderivative H in this region. Use Part* (a) to show that R(z) = H(z) F(z) is constant on C\{0}.

A function u(x, y) is said to be **harmonic** in a region G if the Laplacian $\Delta u = u_{xx} + u_{yy}$ is equal to zero for all $(x, y) \in G$.

- 4. Let $f: G \to \mathbb{C}$ be a holomorphic function on G. Show that the real part and imaginary part of f are harmonic functions.
- 5. Find an entire function f (i.e. f is holomorphic on \mathbb{C}) such that f(0) = 1 2i and the real part of f is

$$u(x,y) = e^{-y}\cos(x) - y.$$