MTH 483/583 Complex Variables -~ Homework 7

Solution Key
Spring 2020

Exercise 1. Let f(z) = u(x,y) +iv(z,y) be a holomorphic function in region D C C. Show
that the vector field P(z,y) = (u(x,y), —v(x,y)) is incompressible and irrotational. In other
words, show that divP = 0 and curlP = 0.

Answer: Since f is holomorphic in D, the Cauchy-Riemann equations hold
Uy = Vy, Uy = —Vy InD
Thus,
div P = 0,u(z,y) + 0y(—v(z,y)) =uy, —v, =0, (z,y) €D
and
curl P = 0,(—v(z,y)) — Oy(u(z,y)) = —vy, —u, =0, (x,y) €D
O

Exercise 2. Let ®(2) = ¢(z,y) + ip(z,y) be an antiderivative of function f(z) = u(z,y) +
iv(x,y) in the region D € C. Show that at each point (z,y) € D the vector P(x,y) =
(u(z,y), —v(x,y)) is tangent to the level set of ¢ that passes through (x,y)

Answer: Fix (xg,y0) € D. The level set of ¢ that passes through (xg,y) is the curve
(= {(z.9) : (z,y) = C}, where C = (x0, ). We have

(I),(Z) = ¢z + ity
f(z) =u+iv
Because ® is an antiderivative of f, we have ®'(z) = f(z). In other words,

¢I:U, r(/)xzv

Because @ is holomorphic, the Cauchy-Riemann equations hold for ¢ and . In particular,

u:¢x:¢y



Then

P(x0,90) = (u(z0,%0), —v(Z0,%0)) = (¥ (w0, Y0), == (T0,Y0))
We see that P(xo, yo) - V(xo, yo) = yts —21p, = 0. This implies P(xo, yo) is perpendicular
to the gradient vector Vi(xg, 3p). On the other hand, the level set ¢ of ¢ is also perpendicular

to the gradient vector of Vi at (xg,y). Therefore, P(xg,yo) is tangent to the level set of ¢
at (o, o) u

Exercise 3. Determine an antiderivative of the following function. Then identify the region
where that antiderivative is holomorphic.

(a) f(2) = =27

Answer: We will find an antiderivative of f by the substitution rule as we would normally
do with the real-variable function x+ﬂ Put u = 22 + 1. Then du = 2zdz.

1
z sdu 1 1
/22+1dz: QTzﬁLogu:ﬁLog(zszl).

Thus, F(z) = ;Log(z* + 1) is an antiderivative of f. The region where F is discontinuous is
for those 2z such that

22 + 1€ R§0
Write z = x + iy then

P+1eRy +—= z=0,y>lory<—1

Thus, F'is holomorphic in the region

Q=C\{z=1y: |yl = 1}.
You can sketch a picture of {2 on the complex plane to see what it looks like.

x2+1
form % In(z%+ 1) + C, not all antiderivatives of the complex-variable function % are of the
form %Log(z2 + 1) + C. Only the antiderivatives of f in the region (2 have to be of the form
tLog(z? + 1) + C (see Problem 3 of Homework 6). The reason is that antiderivative of <
is Log(au) where a is any complex constant. This is not the same as Log(u) + const. The
domain of continuity and differentiability of Log(au) is different from that of Log(u). O

(b) f(2) = zsin(z? + 1)

Important notes: Although all antiderivatives of the real-variable function are of the

Answer: We will find an antiderivative of f by the substitution rule as we would normally
do with the real-variable function zsin(z? 4+ 1). Put v = 2? + 1. Then du = 2zdz.

1 1 1
/zsin(z2 +1)dz = / (sinw) (ﬁdu) =g cosu=g cos(z” +1).



Thus, F(z) = 3cos(z? + 1) is an antiderivative of f. Since F is the composition of two
entire functions, namely, the cosine function cos(z), and the polynomial z? + 1. Hence, F is
holomorphic on the entire complex plane.

]

(c) f(z) = 2*Logz

Answer: We will find an antiderivative of f by integration by part as we would normally
do with the real-variable function 2?In .

u="Logz, dv=z%dz
3

1 z
du = —d = —
u=_dz, v=-
We have
1 2 1 3
/zQLogzdz:/udv:uv—/vdu:§Z3L0gz—/%dz:§z3Logz—%.

Thus, F(z) = 52°Log(z) — §2° is an antiderivative of f. Note that the first term of f is the

9
multiplication of z3 and Logz and the second term is an entire function —iz3. Thus F is

9
holomorphic in the region
C\ R

]

Exercise 4. Evaluate the complex integrals f7 f(2) where f and 7 are given as follows.
Clearly mention the method/theorem you use.

(a) f(z) = z and 7 is the square with vertices at (—1,—1),(1,—1),(1,1),(—1,1) positively
oriented.

Answer: We will use the definition of line integral (because f has no antiderivatives). Let
us divide v into 4 pieces: 71, Y2, V3, V4 (see the graph below)

(=\,1) (:'f; (oY)

Y‘.f \ /\r?

N7

(-'I'-—[j YL (\ ;—‘)




where
nt)=t—i, tel[-1,1]
72(15) =1+, te [—1,1}
v3(t)=—t+1i, te[-1,1]
74(t) =—-1—-1t, te [_17 1]

/Edz:/ Zdz+/ Zdz+/ Zdz+/ zdz
v 71 Y2 Y3 Y4
1

_ / ()7, (H)dt + / 172—@)7;(t)dt—|— / 3 (674 (t)dt + / Ya(t)y,(t)dt

1 1

Then

1 1 1 1
:i/tﬂﬁ+/i?ﬁ@ﬁ+/i3?%ﬂﬁ+/ijfa4Mt

1 -1 -1
1

:/%H@ﬁﬁfa—mm+/%4—m4w+/(4+MGMt

-1 -1 -1

=[8/]

(b) f(2) = |2|* and 7 is the ellipse z* + % = 1 negatively oriented.

Answer: One can plot the ellipse with the command ContourPlot in Mathematica (Fig-|
. This command plots the solution set of an equation (or system of equations).

ContourPlot [{x"2 + y~2/4 == 1}, {x, -2, 2}, {y, -2, 2}, Axes -> True]

The ellipse has parametrization z(t) = cost, y(t) = 2sint where 0 < ¢ < 27. Unfortunately,
this parametrization gives a positive orientation on the ellipse. One has to reverse the
orientation. To do so, we simply replace t with 0 + 27 — ¢t = 27 — t. Now we have z(t) =
cos(2m —t) = cost and y(t) = 2sin(2r — t) = —2sint. Thus,

v(t) = cost — 2isint, t € [0,2n].
Thus,

2w
0

2
/ |2|2dz = / ()2 (t)dt = / (cos?t 4 4sin®t) (—sint — 2i cost)dt.
ol 0

One can split the integral into the real part and imaginary part:
2m 2m
/ |z]2dz = — / (cos®t + 4sin’t) sin tdt — 22’/ (cos® + 4sin’t) cos tdt
0% 0 0

4
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Figure 1:

One can use the fact that sin®t = 1 — cos?t and cos?t = 1 — sin? ¢ to compute each integral.

Each is equal to zero. Thus,
[ s~
.

O]
(c) f(z) = 2312;;1“ and v is the part of parabola y = z? from z = 0 to = = 2.
Answer: We use the substitution w = 2% + 3z + 1. Note that dw = 3(2? + 1)dz. Thus,
22 +1
—d 1
/ 2 4+3z+1 dz = / v (1)

Y

where 7 is the image of v under the function g(z) = 2 + 32 + 1. Knowing that + has
parametrization
Y(t) = 2(t) +iy(t) =t +it?, te]0,2]

we can draw 1 by Mathematica as follows (Figure 2)).
glz_] =273 + 3%z + 1
ParametricPlot [ReIm[g[t + Ixt~2]], {t, 0, 2}]

In other words, n(t) = g(v(t)) = v(t)® + 3v(t) + 1. The endpoints of n are
n(0) =~(0)° +37(0) + 1 =1

n(2) =7(2)% +37(2) + 1 = —81 — 4i
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Figure 2:

We see that 7 intersects the negative real line. This implies that 1 doesn’t lie entirely in the
region where Logw is holomorphic. One needs to choose a different antiderivative of % SO
that the 7 lies entirely in the region of holomorphicity of that function. Let us choose the
following antiderivative of %:

G(w) = Log (e "2w) = Log(—iw)

The region where G(w) is an antiderivative of 1/w is the whole complex plane except for the
red line in [Figure 3| This region contains the entire 7. Thus, one can use FTC at (I)):

— 10

Figure 3:

/%dw = G(n(2))—G(n(0)) = G(—81—4i)—G(1) = Log(—4+81i)—Log(—i) ~ 4.3957+3.1909i
U
Therefore,

22 4+1 1 1

————dz == | —dw =~ 1.4652 + 1.06371

/z3+3z~|—1z 3/ww * !
"

~

(d) f(z) = 2% where ~ is the part of the hyperbola y = 1 from z =2 to z = 1.

Answer: By doing integration by part three times (in the manner of Problem 3c), we see
that F(z) = (2% — 322 4+ 62 — 6)e* is an antiderivative of f in C. It is an antiderivative of
f in the whole complex plane. Thus, one can apply FTC. The starting point of v is 2 + %@
The end point of v is 1 4+ 4. You can use the command ParametricPlot or Plot to plot ~.
(Please try it!)

1
/f(z) dz=F(1+i)—F (2 + z;) — [—5.43304 — 24.7084i
il



(e) f(z) = zLogz where ~ is the unit circle centered at the origin positively oriented.

Answer: By integration by part (in the manner of Problem 3c), we see that F'(z) = %Logz—
% is an antiderivative of f in C\R<,. Because v doesn’t lie entirely in C\ R, we cut v with
a small precision. Let 7, be the circle from the point A = =7+ to the point B = /"9,
We can use the FTC for the path .. Then

-0.5

Figure 4:

/zLog zdz =lim / zLog zdz =lim (F (ei(”_g)) - F(ei(_””))) =
y e—0 ve

e—0
O
(f) f(z) = 2" where 7 is the unit circle centered at the origin positively oriented.
Answer: Note that f(z) has an antiderivative F(z) = 772" in the region C\R<y. Because
v doesn’t lie entirely in this region, we cut v the same way as Part (e).
[l

(g) f(2) = ijzl and ~y is the unit circle centered at the origin negatively oriented.

Answer: f(z)is holomorphic in the region enclosed by the unit circle, a simple closed curve.
Then Cauchy-Goursat Theorem yields

2
/Z S dz=[0
gl




(h) f(2) =sinz and ~ is the unit circle centered at the origin negatively oriented.

Answer: sin z is an entire function, thus Cauchy-Goursat Theorem implies

/sinzdz:@

.
since 7y is a simple closed curve. O

(i) f(z) = z2€_—z&-1 and 7 is the triangle with vertices at (—1,0), (1,0), (0, 2) positively oriented.

Answer: Rewrite f(z) as

e/(z+i) _ 9(2)

Z—1 Z—1

where g(z) = ;—H We see that g is holomorphic inside the triangle. This allows us to use
Cauchy’s Integral Formula

[yf(z) dz = A 9G) 12— origi) =

Z—1

]

(G) f(z) = ﬁ and ~ is the circle with radius 2 centered at the origin negatively oriented.

Answer: We can rewrite B

(z —i)*(z +1)
is holomorphic everywhere except at +i. Because 7 encloses two singular points, we
Yy y g

need to split v so that each curve encloses only onw singular point. Let us split v the way
indicated on the picture. Note that v, and 7, are negatively oriented. Then

f(z) =



Figure 5:

/’Y(Z—Z) (z+1)? / / /6/zz_tz dz +/ﬁ%dz

Put g(2) =e*/(2 + 2) and h(z) =e*/(z — z) By the general Cauchy’s Integral Formula,

/% (Zgizi)zdz — —2mig/(i) = (_% n %) i

/71 (zhfr—zz)zdz = —2mil(=i) = (% + %) e~ir.

@Z ]_ Z i 1 Z »
mdz: —§+§ e+ §+§ e it
~

(k) f(2z) = =15 and v is the circle with radius 2 centered at the origin positively oriented.

Therefore,

]

Answer: f is holomorphic everywhere except at z’s such that z? + z +1 = 0. Solutions to
this equation are z; = —1/2 —+/3i/2 and 2, = —1/2 4+ +/3i/2. Please sketch them! We then
split v into two curves like in Part (j) for the same reason (except that both of them are
positively oriented). Use Cauchy’s Integral Formula

/vf(z)dz:/v(Z_Zl)l(z_zﬁdz:/v1 %dwr/wl/iz_—;z?)dz




+ 27

= 2m
22 — &1 21 — 22

(D) f(z) = m and ~y is parametrized by

x(t) = 3costcos3t,
, t €10,2n]

y(t) = 3sint cos 3t
Answer: First, we split the curve ~ into three simple curves as shown in the graph below

Y

=

L;'(‘

f is holomorphic everywhere except at z; = 1, 20 = —1 + 14, 23 = —1 — ¢. Use the same
method as in Part (j) and (k), we get

lf(Z)dZZ@

Exercise 5. To each of the following complex functions f,

1
1=

1. f(2)
2. fz)=z—%

3. () = ==

answer the following questions:
(a) Plot the Polya vector field associated with f. (This is the velocity field of an ideal flow.)
Answer: (1) f(z) =1— %

flz_] := 1-z"(-2)
VectorPlot [{Re[f[x + Ixyll, -Im[flx + Ixyll}, {x, -2, 5}, {y, -2, 5},

VectorStyle -> Blue]

10
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(2) f(z) =2 — &

flz_] := z-2z"(-3)
VectorPlot [{Re[f[x + Ixyl]l, -Im[f[x
VectorStyle -> Blue]

+

Ixy11}, {x, -2, 5}, {y, -2, 53,

11



-
—— - — -
— -
e e e
T, T, T,
T, T, i

A B R B

L Y
L T N

)

¥
¥
!

t
i

Frohd
£

f

L T e T e e

e Tm T T Tl Tl il

b

TR TR TR T e

— o e e ——

—~ o e e — - —

—_—

il il i s

#

r

N

&

EER A A A G O B 4

!

!

:= I/(Sqrt[1 - z~2])

flz_]
VectorPlot [{Re[f[x + Ixy]], -Im[f[x + Ixy]ll}, {x, -1.5, 1.5}, {y, -1.5, 1.5},

VectorScale -> Automatic, VectorStyle -> Bluel
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(b) Determine a complex potential ® of the flow.

Answer: (1) z+ I is an antiderivative of 1 — . Thus,

) 1 x . Y
R il (=) R o).

T
is a complex potential of f(z) =1— .

(2) Similarly, % + 57 is an antiderivative of z — . So,

(z + iy)? 1 % — 2 1 , 1
() SR 2(x + iy)? 2 * (22 +y2)? e (22 +y?)?

(3)

®(z) =i Arcsin z

(c) Write the equation of streamlines of the flow. Then plot the streamlines.

Answer: (1) The imaginary part of the complex potential ® is ¢(z,y) = y— ﬁ Because
a streamline is a level set of 1, we conclude that the equation of the streamlines is

Yy
B e
Y x2_|_y2

We can plot the streamlines by Mathematica as follows.

flz_] :=1-2z"(-2)
StreamPlot [{Re[f[x + Ixyl]l, -Im[f[x + Ixyll}, {x, -2, 5}, {y, -2, 5},
StreamStyle -> Orange]

13
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(2) The imaginary part of the complex potential ® is ¥ (z,y) = zy (1 -7 ) Because

1
(@2+y?)?
a streamline is a level set of 1, we conclude that the equation of the streamlines is

1
- J=c
ry ($2 _|_y2)2

We can plot the streamlines by Mathematica as follows.

flz_] =z - z°(-3)
StreamPlot [{Re[f [x + Ixyl], -Im[f[x + Ixyll}, {x, -2, 5}, {y, -2, 5},
StreamStyle -> Orange]

(5]
T
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(3) Let us put w = Arcsinz = a + ib. Here a and b are functions of x and y. Then
®(z) = iw = —b + ta. The imaginary of ® is 1) = a. A streamline is a level set of ¢, which
has equation ¢ (x,y) = C. Thus, on each streamline we have a = C. There is no constraint
on b. Let us write C or a and t for b to emphasize the fact that a is a constant and b is
arbitrary. Then

w = Arcsinz = C' + it

We have

o _ pmiw  Gi(CFit) _ p—i(Cit)
z =sinw = 5 = 5 = sin C cosh(t) + i cos C'sinh(t).
i i

Therefore, the parametric equation (in complex form) of each streamline is

2(t) = sin C cosh(t) + i cos C'sinh(t).

]

(d) Imagining that the flow you just plotted is a physical flow, can you determine the phys-
ical boundaries (i.e. walls and rigid obstacles) of the flow?

Answer: (1) For the function f(z) = 1— z%, we can see from the graph below that the phys-
ical boundaries are z-axis and the unit circle centered at the origin. This is the streamline
with C' = 0. Indeed, the equation

Yy __o

¢($,y):y—m—

gives y = 0 (the horizontal line) and x? + y? = 1 (the unit circle).

15
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(2) For the function f(z) = z — %, we can see from the graph below that the physi-
cal boundaries are: x-axis, y-axis, and the unit circle centered at the origin. This is the
streamline with C' = 0. Indeed, the equation

1
Y(z,y) = vy 1—m =0

gives x = 0 (the vertical line), y = 0 (the horizontal line) and 2? 4+ y* = 1 (the unit circle).

%]
T

(3) For the function f(z) = \/1+7, we can see from the graph below that the physical

boundaries the line (—oo, —1) U (1, 00) on the real line. The flow is running through a hole
on a punctured wall. The wall is the whole real line. The hole is at the interval (—1,1).

16



The punctured wall is made up two streamlines corresponding to C' = +7/2. Indeed, the
equation

z(t) = sin (E> cosh(t) + i cos (Z) sinh()
2 2
gives
z(t) = cosh(t).
This is the the line (1, 00). The equation

z(t) = sin (—g) cosh(t) + i cos (—g) sinh(t)

gives
z(t) = — cosh(t).
This is the the line (—oo, —1).
flz_] := I/Sqrt[1l - z"2]
p = StreamPlot[{Re[f[x + Ixyl]l, -Im[f[x + Ixyll}, {x, -2, 2}, {y, -2,
2}, StreamStyle -> Orange]
ql = ParametricPlot[{Cosh[t], 0}, {t, -3, 3}]
q2 = ParametricPlot[{-Cosh[t], 0}, {t, -3, 3}]
Show[p, q1, g2]
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