MTH 483/583 Complex Variables - Homework 7

Solution Key

Spring 2020

Exercise 1. Let $f(z)=u(x, y)+i v(x, y)$ be a holomorphic function in region $D \subset \mathbb{C}$. Show that the vector field $P(x, y)=(u(x, y),-v(x, y))$ is incompressible and irrotational. In other words, show that $\operatorname{div} P=0$ and $\operatorname{curl} P=0$.

Answer: Since f is holomorphic in D, the Cauchy-Riemann equations hold

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x} \quad \text { in } D
$$

Thus,

$$
\operatorname{div} P=\partial_{x} u(x, y)+\partial_{y}(-v(x, y))=u_{x}-v_{y}=0, \quad(x, y) \in D
$$

and

$$
\operatorname{curl} P=\partial_{x}(-v(x, y))-\partial_{y}(u(x, y))=-v_{x}-u_{y}=0, \quad(x, y) \in D
$$

Exercise 2. Let $\Phi(z)=\phi(x, y)+i \psi(x, y)$ be an antiderivative of function $f(z)=u(x, y)+$ $i v(x, y)$ in the region $D \in \mathbb{C}$. Show that at each point $(x, y) \in D$ the vector $P(x, y)=$ $(u(x, y),-v(x, y))$ is tangent to the level set of ψ that passes through (x, y)

Answer: Fix $\left(x_{0}, y_{0}\right) \in D$. The level set of ψ that passes through $\left(x_{0}, y_{0}\right)$ is the curve $\ell=\{(x, y): \psi(x, y)=C\}$, where $C=\psi\left(x_{0}, y_{0}\right)$. We have

$$
\begin{gathered}
\Phi^{\prime}(z)=\phi_{x}+i \psi_{x} \\
f(z)=u+i v
\end{gathered}
$$

Because Φ is an antiderivative of f, we have $\Phi^{\prime}(z)=f(z)$. In other words,

$$
\phi_{x}=u, \quad \psi_{x}=v
$$

Because Φ is holomorphic, the Cauchy-Riemann equations hold for ϕ and ψ. In particular,

$$
u=\phi_{x}=\psi_{y}
$$

Then

$$
P\left(x_{0}, y_{0}\right)=\left(u\left(x_{0}, y_{0}\right),-v\left(x_{0}, y_{0}\right)\right)=\left(\psi_{y}\left(x_{0}, y_{0}\right),-\psi_{x}\left(x_{0}, y_{0}\right)\right)
$$

We see that $P\left(x_{0}, y_{0}\right) \cdot \nabla \psi\left(x_{0}, y_{0}\right)=\psi_{y} \psi_{x}-\psi_{x} \psi_{y}=0$. This implies $P\left(x_{0}, y_{0}\right)$ is perpendicular to the gradient vector $\nabla \psi\left(x_{0}, y_{0}\right)$. On the other hand, the level set ℓ of ψ is also perpendicular to the gradient vector of $\nabla \psi$ at $\left(x_{0}, y_{0}\right)$. Therefore, $P\left(x_{0}, y_{0}\right)$ is tangent to the level set of ψ at $\left(x_{0}, y_{0}\right)$.

Exercise 3. Determine an antiderivative of the following function. Then identify the region where that antiderivative is holomorphic.
(a) $f(z)=\frac{z}{z^{2}+1}$

Answer: We will find an antiderivative of f by the substitution rule as we would normally do with the real-variable function $\frac{x}{x^{2}+1}$. Put $u=z^{2}+1$. Then $d u=2 z d z$.

$$
\int \frac{z}{z^{2}+1} d z=\int \frac{\frac{1}{2} d u}{u}=\frac{1}{2} \log u=\frac{1}{2} \log \left(z^{2}+1\right)
$$

Thus, $F(z)=\frac{1}{2} \log \left(z^{2}+1\right)$ is an antiderivative of f. The region where F is discontinuous is for those z such that

$$
z^{2}+1 \in \mathbb{R}_{\leq 0}
$$

Write $z=x+i y$ then

$$
z^{2}+1 \in \mathbb{R}_{\leq 0} \quad \Longleftrightarrow \quad x=0, y \geq 1 \text { or } y \leq-1
$$

Thus, F is holomorphic in the region

$$
\Omega=\mathbb{C} \backslash\{z=i y:|y| \geq 1\} .
$$

You can sketch a picture of Ω on the complex plane to see what it looks like.
Important notes: Although all antiderivatives of the real-variable function $\frac{x}{x^{2}+1}$ are of the form $\frac{1}{2} \ln \left(x^{2}+1\right)+C$, not all antiderivatives of the complex-variable function $\frac{z}{z^{2}+1}$ are of the form $\frac{1}{2} \log \left(z^{2}+1\right)+C$. Only the antiderivatives of f in the region Ω have to be of the form $\frac{1}{2} \log \left(z^{2}+1\right)+C$ (see Problem 3 of Homework 6). The reason is that antiderivative of $\frac{1}{u}$ is $\log (a u)$ where a is any complex constant. This is not the same as $\log (u)+$ const. The domain of continuity and differentiability of $\log (a u)$ is different from that of $\log (u)$.
(b) $f(z)=z \sin \left(z^{2}+1\right)$

Answer: We will find an antiderivative of f by the substitution rule as we would normally do with the real-variable function $x \sin \left(x^{2}+1\right)$. Put $u=z^{2}+1$. Then $d u=2 z d z$.

$$
\int z \sin \left(z^{2}+1\right) d z=\int(\sin u)\left(\frac{1}{2} d u\right)=\frac{1}{2} \cos u=\frac{1}{2} \cos \left(z^{2}+1\right) .
$$

Thus, $F(z)=\frac{1}{2} \cos \left(z^{2}+1\right)$ is an antiderivative of f. Since F is the composition of two entire functions, namely, the cosine function $\cos (z)$, and the polynomial $z^{2}+1$. Hence, F is holomorphic on the entire complex plane.
(c) $f(z)=z^{2} \log z$

Answer: We will find an antiderivative of f by integration by part as we would normally do with the real-variable function $x^{2} \ln x$.

$$
\begin{array}{ll}
u=\log z, & d v=z^{2} d z \\
d u=\frac{1}{z} d z, & v=\frac{z^{3}}{3}
\end{array}
$$

We have

$$
\int z^{2} \log z d z=\int u d v=u v-\int v d u=\frac{1}{3} z^{3} \log z-\int \frac{z^{2}}{3} d z=\frac{1}{3} z^{3} \log z-\frac{z^{3}}{9}
$$

Thus, $F(z)=\frac{1}{3} z^{3} \log (z)-\frac{1}{9} z^{3}$ is an antiderivative of f. Note that the first term of f is the multiplication of z^{3} and $\log z$ and the second term is an entire function $-\frac{1}{9} z^{3}$. Thus F is holomorphic in the region

$$
\mathbb{C} \backslash \mathbb{R}_{\leq 0}
$$

Exercise 4. Evaluate the complex integrals $\int_{\gamma} f(z)$ where f and γ are given as follows. Clearly mention the method/theorem you use.
(a) $f(z)=\bar{z}$ and γ is the square with vertices at $(-1,-1),(1,-1),(1,1),(-1,1)$ positively oriented.

Answer: We will use the definition of line integral (because f has no antiderivatives). Let us divide γ into 4 pieces: $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ (see the graph below)

where

$$
\begin{array}{cc}
\gamma_{1}(t)=t-i, & t \in[-1,1] \\
\gamma_{2}(t)=1+i t, & t \in[-1,1] \\
\gamma_{3}(t)=-t+i, & t \in[-1,1] \\
\gamma_{4}(t)=-1-i t, & t \in[-1,1]
\end{array}
$$

Then

$$
\begin{aligned}
& \quad \int_{\gamma} \bar{z} d z=\int_{\gamma_{1}} \bar{z} d z+\int_{\gamma_{2}} \bar{z} d z+\int_{\gamma_{3}} \bar{z} d z+\int_{\gamma_{4}} \bar{z} d z \\
& =\int_{-1}^{1} \overline{\gamma_{1}(t)} \gamma_{1}^{\prime}(t) d t+\int_{-1}^{1} \overline{\gamma_{2}(t)} \gamma_{2}^{\prime}(t) d t+\int_{-1}^{1} \overline{\gamma_{3}(t)} \gamma_{3}^{\prime}(t) d t+\int_{-1}^{1} \overline{\gamma_{4}(t)} \gamma_{4}^{\prime}(t) d t \\
& =\int_{-1}^{1} \overline{t-i} d t+\int_{-1}^{1} \overline{1+i t}(i) d t+\int_{-1}^{1} \overline{-t+i}(-1) d t+\int_{-1}^{1} \overline{-1-i t}(-i) d t \\
& =\int_{-1}^{1}(t+i) d t+\int_{-1}^{1}(1-i t) i d t+\int_{-1}^{1}(-t-i)(-1) d t+\int_{-1}^{1}(-1+i t)(-i) d t \\
& =8 i
\end{aligned}
$$

(b) $f(z)=|z|^{2}$ and γ is the ellipse $x^{2}+\frac{y^{2}}{4}=1$ negatively oriented.

Answer: One can plot the ellipse with the command ContourPlot in Mathematica Figure 1). This command plots the solution set of an equation (or system of equations).

$$
\text { ContourPlot }\left[\left\{x^{\wedge} 2+y^{\wedge} 2 / 4==1\right\},\{x,-2,2\},\{y,-2,2\} \text {, Axes }->\text { True }\right]
$$

The ellipse has parametrization $x(t)=\cos t, y(t)=2 \sin t$ where $0 \leq t \leq 2 \pi$. Unfortunately, this parametrization gives a positive orientation on the ellipse. One has to reverse the orientation. To do so, we simply replace t with $0+2 \pi-t=2 \pi-t$. Now we have $x(t)=$ $\cos (2 \pi-t)=\cos t$ and $y(t)=2 \sin (2 \pi-t)=-2 \sin t$. Thus,

$$
\gamma(t)=\cos t-2 i \sin t, \quad t \in[0,2 \pi] .
$$

Thus,

$$
\int_{\gamma}|z|^{2} d z=\int_{0}^{2 \pi}|\gamma(t)|^{2} \gamma^{\prime}(t) d t=\int_{0}^{2 \pi}\left(\cos ^{2} t+4 \sin ^{2} t\right)(-\sin t-2 i \cos t) d t
$$

One can split the integral into the real part and imaginary part:

$$
\int_{\gamma}|z|^{2} d z=-\int_{0}^{2 \pi}\left(\cos ^{2} t+4 \sin ^{2} t\right) \sin t d t-2 i \int_{0}^{2 \pi}\left(\cos ^{2} t+4 \sin ^{2} t\right) \cos t d t
$$

Figure 1:

One can use the fact that $\sin ^{2} t=1-\cos ^{2} t$ and $\cos ^{2} t=1-\sin ^{2} t$ to compute each integral. Each is equal to zero. Thus,

$$
\int_{\gamma} f(z) d z=0
$$

(c) $f(z)=\frac{z^{2}+1}{z^{3}+3 z+1}$ and γ is the part of parabola $y=x^{2}$ from $x=0$ to $x=2$.

Answer: We use the substitution $w=z^{3}+3 z+1$. Note that $d w=3\left(z^{2}+1\right) d z$. Thus,

$$
\begin{equation*}
\int_{\gamma} \frac{z^{2}+1}{z^{3}+3 z+1} d z=\frac{1}{3} \int_{\eta} \frac{1}{w} d w \tag{1}
\end{equation*}
$$

where η is the image of γ under the function $g(z)=z^{3}+3 z+1$. Knowing that γ has parametrization

$$
\gamma(t)=x(t)+i y(t)=t+i t^{2}, \quad t \in[0,2]
$$

we can draw η by Mathematica as follows (Figure 2).

$$
\begin{aligned}
& \mathrm{g}\left[z_{-}\right]:=z^{\wedge} 3+3 * z+1 \\
& \text { ParametricPlot }\left[\operatorname{ReIm}\left[g\left[t+I * t^{\wedge} 2\right]\right],\{t, 0,2\}\right]
\end{aligned}
$$

In other words, $\eta(t)=g(\gamma(t))=\gamma(t)^{3}+3 \gamma(t)+1$. The endpoints of η are

$$
\begin{gathered}
\eta(0)=\gamma(0)^{3}+3 \gamma(0)+1=1 \\
\eta(2)=\gamma(2)^{3}+3 \gamma(2)+1=-81-4 i
\end{gathered}
$$

Figure 2:

We see that η intersects the negative real line. This implies that η doesn't lie entirely in the region where $\log w$ is holomorphic. One needs to choose a different antiderivative of $\frac{1}{w}$ so that the η lies entirely in the region of holomorphicity of that function. Let us choose the following antiderivative of $\frac{1}{w}$:

$$
G(w)=\log \left(e^{-i \frac{\pi}{2}} w\right)=\log (-i w)
$$

The region where $G(w)$ is an antiderivative of $1 / w$ is the whole complex plane except for the red line in Figure 3. This region contains the entire η. Thus, one can use FTC at (11):

Figure 3:
$\int_{\eta} \frac{1}{w} d w=G(\eta(2))-G(\eta(0))=G(-81-4 i)-G(1)=\log (-4+81 i)-\log (-i) \approx 4.3957+3.1909 \mathrm{i}$
Therefore,

$$
\int_{\gamma} \frac{z^{2}+1}{z^{3}+3 z+1} d z=\frac{1}{3} \int_{\eta} \frac{1}{w} d w \approx 1.4652+1.0637 i
$$

(d) $f(z)=z^{3} e^{z}$ where γ is the part of the hyperbola $y=\frac{1}{x}$ from $x=2$ to $x=1$.

Answer: By doing integration by part three times (in the manner of Problem 3c), we see that $F(z)=\left(z^{3}-3 z^{2}+6 z-6\right) e^{z}$ is an antiderivative of f in \mathbb{C}. It is an antiderivative of f in the whole complex plane. Thus, one can apply FTC. The starting point of γ is $2+\frac{1}{2} i$. The end point of γ is $1+i$. You can use the command ParametricPlot or Plot to plot γ. (Please try it!)

$$
\int_{\gamma} f(z) d z=F(1+i)-F\left(2+i \frac{1}{2}\right)=-5.43304-24.7084 i
$$

(e) $f(z)=z \log z$ where γ is the unit circle centered at the origin positively oriented.

Answer: By integration by part (in the manner of Problem 3c), we see that $F(z)=\frac{z^{2}}{2} \log z-$ $\frac{z^{2}}{4}$ is an antiderivative of f in $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. Because γ doesn't lie entirely in $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$, we cut γ with a small precision. Let γ_{ϵ} be the circle from the point $A=e^{i(-\pi+\epsilon)}$ to the point $B=e^{i(\pi-\epsilon)}$. We can use the FTC for the path γ_{ϵ}. Then

Figure 4:

$$
\int_{\gamma} z \log z d z=\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon}} z \log z d z=\lim _{\varepsilon \rightarrow 0}\left(F\left(e^{i(\pi-\varepsilon)}\right)-F\left(e^{i(-\pi+\varepsilon)}\right)\right)=\cdots
$$

(f) $f(z)=z^{i}$ where γ is the unit circle centered at the origin positively oriented.

Answer: Note that $f(z)$ has an antiderivative $F(z)=\frac{1}{i+1} z^{i+1}$ in the region $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$. Because γ doesn't lie entirely in this region, we cut γ the same way as Part (e).
(g) $f(z)=\frac{z^{2}+1}{z+2}$ and γ is the unit circle centered at the origin negatively oriented.

Answer: $f(z)$ is holomorphic in the region enclosed by the unit circle, a simple closed curve. Then Cauchy-Goursat Theorem yields

$$
\int_{\gamma} \frac{z^{2}+1}{z+2} d z=0
$$

(h) $f(z)=\sin z$ and γ is the unit circle centered at the origin negatively oriented.

Answer: $\sin z$ is an entire function, thus Cauchy-Goursat Theorem implies

$$
\int_{\gamma} \sin z d z=0
$$

since γ is a simple closed curve.
(i) $f(z)=\frac{e^{z}}{z^{2}+1}$ and γ is the triangle with vertices at $(-1,0),(1,0),(0,2)$ positively oriented.

Answer: Rewrite $f(z)$ as

$$
\frac{e^{z} /(z+i)}{z-i}=\frac{g(z)}{z-i}
$$

where $g(z)=\frac{e^{z}}{z+i}$. We see that g is holomorphic inside the triangle. This allows us to use Cauchy's Integral Formula

$$
\int_{\gamma} f(z) d z=\int_{\gamma} \frac{g(z)}{z-i} d z=2 \pi i g(i)=\pi e^{i}
$$

(j) $f(z)=\frac{e^{z}}{\left(z^{2}+1\right)^{2}}$ and γ is the circle with radius 2 centered at the origin negatively oriented.

Answer: We can rewrite

$$
f(z)=\frac{e^{z}}{(z-i)^{2}(z+i)^{2}}
$$

f is holomorphic everywhere except at $\pm i$. Because γ encloses two singular points, we need to split γ so that each curve encloses only onw singular point. Let us split γ the way indicated on the picture. Note that γ_{1} and γ_{2} are negatively oriented. Then

Figure 5:

$$
\int_{\gamma} \frac{e^{z}}{(z-i)^{2}(z+i)^{2}} d z=\int_{\gamma_{1}}+\int_{\gamma_{2}}=\int_{\gamma_{1}} \frac{e^{z} /(z+i)^{2}}{(z-i)^{2}} d z+\int_{\gamma_{2}} \frac{e^{z} /(z-i)^{2}}{(z+i)^{2}} d z
$$

Put $g(z)=e^{z} /(z+i)^{2}$ and $h(z)=e^{z} /(z-i)^{2}$. By the general Cauchy's Integral Formula,

$$
\begin{aligned}
\int_{\gamma_{1}} \frac{g(z)}{(z-i)^{2}} d z & =-2 \pi i g^{\prime}(i)=\left(-\frac{1}{2}+\frac{i}{2}\right) e^{i} \pi \\
\int_{\gamma_{1}} \frac{h(z)}{(z+i)^{2}} d z & =-2 \pi i h^{\prime}(-i)=\left(\frac{1}{2}+\frac{i}{2}\right) e^{-i} \pi
\end{aligned}
$$

Therefore,

$$
\int_{\gamma} \frac{e^{z}}{\left(z^{2}+1\right)^{2}} d z=\left(-\frac{1}{2}+\frac{i}{2}\right) e^{i} \pi+\left(\frac{1}{2}+\frac{i}{2}\right) e^{-i} \pi
$$

(k) $f(z)=\frac{1}{z^{2}+z+1}$ and γ is the circle with radius 2 centered at the origin positively oriented.

Answer: f is holomorphic everywhere except at z 's such that $z^{2}+z+1=0$. Solutions to this equation are $z_{1}=-1 / 2-\sqrt{3} i / 2$ and $z_{2}=-1 / 2+\sqrt{3} i / 2$. Please sketch them! We then split γ into two curves like in Part (j) for the same reason (except that both of them are positively oriented). Use Cauchy's Integral Formula

$$
\int_{\gamma} f(z) d z=\int_{\gamma} \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)} d z=\int_{\gamma_{1}} \frac{1 /\left(z-z_{1}\right)}{z-z_{2}} d z+\int_{\gamma_{2}} \frac{1 /\left(z-z_{2}\right)}{z-z_{1}} d z
$$

$$
=2 \pi i \frac{1}{z_{2}-z_{1}}+2 \pi i \frac{1}{z_{1}-z_{2}}=0 .
$$

(l) $f(z)=\frac{1}{\left(z^{2}+2 z+2\right)(z-1)}$ and γ is parametrized by

$$
\left\{\begin{array}{l}
x(t)=3 \cos t \cos 3 t, \\
y(t)=3 \sin t \cos 3 t
\end{array} \quad t \in[0,2 \pi]\right.
$$

Answer: First, we split the curve γ into three simple curves as shown in the graph below

f is holomorphic everywhere except at $z_{1}=1, z_{2}=-1+i, z_{3}=-1-i$. Use the same method as in Part (j) and (k), we get

$$
\int_{\gamma} f(z) d z=0
$$

Exercise 5. To each of the following complex functions f,

1. $f(z)=1-\frac{1}{z^{2}}$
2. $f(z)=z-\frac{1}{z^{3}}$
3. $f(z)=\frac{i}{\sqrt{1-z^{2}}}$
answer the following questions:
(a) Plot the Polya vector field associated with f. (This is the velocity field of an ideal flow.)

Answer: (1) $f(z)=1-\frac{1}{z^{2}}$:

```
    \(\mathrm{f}\left[\mathrm{z}_{\mathrm{z}}\right]:=1-\mathrm{z}^{\wedge}(-2)\)
VectorPlot[\{Re[f[x + I*y]], \(-\operatorname{Im}[f[x+I * y]]\},\{x,-2,5\},\{y,-2,5\}\),
VectorStyle -> Blue]
```


(2) $f(z)=z-\frac{1}{z^{3}}$:
$\mathrm{f}\left[\mathrm{z}_{-}\right]:=\mathrm{z}^{-z^{\wedge}(-3)}$
VectorPlot[\{Re[f[x + I*y]], $-\operatorname{Im}[f[x+I * y]]\},\{x,-2,5\},\{y,-2,5\}$, VectorStyle -> Blue]

(3) $f(z)=\frac{i}{\sqrt{1-z^{2}}}$:
$f\left[z_{-}\right]:=I /\left(S q r t\left[1-z^{\wedge} 2\right]\right)$
VectorPlot $[\{\operatorname{Re}[f[x+I * y]],-\operatorname{Im}[f[x+I * y]]\},\{x,-1.5,1.5\},\{y,-1.5,1.5\}$, VectorScale -> Automatic, VectorStyle -> Blue]

(b) Determine a complex potential Φ of the flow.

Answer: (1) $z+\frac{1}{z}$ is an antiderivative of $1-\frac{1}{z^{2}}$. Thus,

$$
\Phi(z)=x+i y+\frac{1}{x+i y}=\left(x+\frac{x}{x^{2}+y^{2}}\right)+i\left(y-\frac{y}{x^{2}+y^{2}}\right)
$$

is a complex potential of $f(z)=1-\frac{1}{z^{2}}$.
(2) Similarly, $\frac{z^{2}}{2}+\frac{1}{2 z^{2}}$ is an antiderivative of $z-\frac{1}{z^{3}}$. So,

$$
\Phi(z)=\frac{(x+i y)^{2}}{2}+\frac{1}{2(x+i y)^{2}}=\frac{x^{2}-y^{2}}{2}\left(1+\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\right)+i x y\left(1-\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

$$
\begin{equation*}
\Phi(z)=i \operatorname{Arcsin} z \tag{3}
\end{equation*}
$$

(c) Write the equation of streamlines of the flow. Then plot the streamlines.

Answer: (1) The imaginary part of the complex potential Φ is $\psi(x, y)=y-\frac{y}{x^{2}+y^{2}}$. Because a streamline is a level set of ψ, we conclude that the equation of the streamlines is

$$
y-\frac{y}{x^{2}+y^{2}}=C .
$$

We can plot the streamlines by Mathematica as follows.

```
        \(f\left[z_{-}\right]:=1-z^{\wedge}(-2)\)
StreamPlot[\{Re[f[x + I*y]], \(-\operatorname{Im}[f[x+I * y]]\},\{x,-2,5\},\{y,-2,5\}\),
    StreamStyle -> Orange]
```


(2) The imaginary part of the complex potential Φ is $\psi(x, y)=x y\left(1-\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\right)$. Because a streamline is a level set of ψ, we conclude that the equation of the streamlines is

$$
x y\left(1-\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\right)=C .
$$

We can plot the streamlines by Mathematica as follows.

```
        \(f\left[z_{-}\right]:=z-z^{\wedge}(-3)\)
StreamPlot [\{Re[f[x + I*y]], \(-\operatorname{Im}[f[x+I * y]]\},\{x,-2,5\},\{y,-2,5\}\),
    StreamStyle -> Orange]
```


(3) Let us put $w=\operatorname{Arcsin} z=a+i b$. Here a and b are functions of x and y. Then $\Phi(z)=i w=-b+i a$. The imaginary of Φ is $\psi=a$. A streamline is a level set of ψ, which has equation $\psi(x, y)=C$. Thus, on each streamline we have $a=C$. There is no constraint on b. Let us write C or a and t for b to emphasize the fact that a is a constant and b is arbitrary. Then

$$
w=\operatorname{Arcsin} z=C+i t
$$

We have

$$
z=\sin w=\frac{e^{i w}-e^{-i w}}{2 i}=\frac{e^{i(C+i t)}-e^{-i(C+i t)}}{2 i}=\sin C \cosh (t)+i \cos C \sinh (t)
$$

Therefore, the parametric equation (in complex form) of each streamline is

$$
z(t)=\sin C \cosh (t)+i \cos C \sinh (t)
$$

(d) Imagining that the flow you just plotted is a physical flow, can you determine the physical boundaries (i.e. walls and rigid obstacles) of the flow?

Answer: (1) For the function $f(z)=1-\frac{1}{z^{2}}$, we can see from the graph below that the physical boundaries are x-axis and the unit circle centered at the origin. This is the streamline with $C=0$. Indeed, the equation

$$
\psi(x, y)=y-\frac{y}{x^{2}+y^{2}}=0
$$

gives $y=0$ (the horizontal line) and $x^{2}+y^{2}=1$ (the unit circle).

(2) For the function $f(z)=z-\frac{1}{z^{3}}$, we can see from the graph below that the physical boundaries are: x-axis, y-axis, and the unit circle centered at the origin. This is the streamline with $C=0$. Indeed, the equation

$$
\psi(x, y)=x y\left(1-\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\right)=0
$$

gives $x=0$ (the vertical line), $y=0$ (the horizontal line) and $x^{2}+y^{2}=1$ (the unit circle).

(3) For the function $f(z)=\frac{i}{\sqrt{1-z^{2}}}$, we can see from the graph below that the physical boundaries the line $(-\infty,-1) \cup(1, \infty)$ on the real line. The flow is running through a hole on a punctured wall. The wall is the whole real line. The hole is at the interval $(-1,1)$.

The punctured wall is made up two streamlines corresponding to $C= \pm \pi / 2$. Indeed, the equation

$$
z(t)=\sin \left(\frac{\pi}{2}\right) \cosh (t)+i \cos \left(\frac{\pi}{2}\right) \sinh (t)
$$

gives

$$
z(t)=\cosh (t)
$$

This is the the line $(1, \infty)$. The equation

$$
z(t)=\sin \left(-\frac{\pi}{2}\right) \cosh (t)+i \cos \left(-\frac{\pi}{2}\right) \sinh (t)
$$

gives

$$
z(t)=-\cosh (t)
$$

This is the the line $(-\infty,-1)$.

```
\(\mathrm{f}\left[\mathrm{z}_{-}\right]:=\mathrm{I} / \operatorname{Sqrt}\left[1-\mathrm{z}^{\wedge} 2\right]\)
\(p=\operatorname{StreamPlot}[\{\operatorname{Re}[f[x+I * y]],-\operatorname{Im}[f[x+I * y]]\},\{x,-2,2\},\{y,-2\),
    2\}, StreamStyle -> Orange]
\(\mathrm{q} 1=\operatorname{ParametricPlot[\{ \operatorname {Cosh}[\mathrm {t}],0\} ,\{ \mathrm {t},-3,3\} ]}\)
\(\mathrm{q} 2=\operatorname{ParametricPlot[\{ -\operatorname {Cosh}[\mathrm {t}],0\} ,\{ \mathrm {t},-3,3\} ]}\)
Show[p, q1, q2]
```


