
MTH 483/583 Complex Variables – Homework 7

Solution Key

Spring 2020

Exercise 1. Let f(z) = u(x, y) + iv(x, y) be a holomorphic function in region D ⊂ C. Show
that the vector field P (x, y) = (u(x, y),−v(x, y)) is incompressible and irrotational. In other
words, show that divP = 0 and curlP = 0.

Answer: Since f is holomorphic in D, the Cauchy-Riemann equations hold

ux = vy, uy = −vx inD

Thus,

divP = ∂xu(x, y) + ∂y(−v(x, y)) = ux − vy = 0, (x, y) ∈ D

and

curlP = ∂x(−v(x, y))− ∂y(u(x, y)) = −vx − uy = 0, (x, y) ∈ D

Exercise 2. Let Φ(z) = φ(x, y) + iψ(x, y) be an antiderivative of function f(z) = u(x, y) +
iv(x, y) in the region D ∈ C. Show that at each point (x, y) ∈ D the vector P (x, y) =
(u(x, y),−v(x, y)) is tangent to the level set of ψ that passes through (x, y)

Answer: Fix (x0, y0) ∈ D. The level set of ψ that passes through (x0, y0) is the curve
` = {(x, y) : ψ(x, y) = C}, where C = ψ(x0, y0). We have

Φ′(z) = φx + iψx

f(z) = u+ iv

Because Φ is an antiderivative of f , we have Φ′(z) = f(z). In other words,

φx = u, ψx = v

Because Φ is holomorphic, the Cauchy-Riemann equations hold for φ and ψ. In particular,

u = φx = ψy
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Then
P (x0, y0) = (u(x0, y0),−v(x0, y0)) = (ψy(x0, y0),−ψx(x0, y0))

We see that P (x0, y0)·∇ψ(x0, y0) = ψyψx−ψxψy = 0. This implies P (x0, y0) is perpendicular
to the gradient vector∇ψ(x0, y0). On the other hand, the level set ` of ψ is also perpendicular
to the gradient vector of ∇ψ at (x0, y0). Therefore, P (x0, y0) is tangent to the level set of ψ
at (x0, y0).

Exercise 3. Determine an antiderivative of the following function. Then identify the region
where that antiderivative is holomorphic.

(a) f(z) = z
z2+1

Answer: We will find an antiderivative of f by the substitution rule as we would normally
do with the real-variable function x

x2+1
. Put u = z2 + 1. Then du = 2zdz.∫

z

z2 + 1
dz =

∫ 1
2
du

u
=

1

2
Log u =

1

2
Log(z2 + 1).

Thus, F (z) = 1
2
Log(z2 + 1) is an antiderivative of f . The region where F is discontinuous is

for those z such that

z2 + 1 ∈ R≤0
Write z = x+ iy then

z2 + 1 ∈ R≤0 ⇐⇒ x = 0, y ≥ 1 or y ≤ −1

Thus, F is holomorphic in the region

Ω = C \ {z = iy : |y| ≥ 1}.

You can sketch a picture of Ω on the complex plane to see what it looks like.

Important notes: Although all antiderivatives of the real-variable function x
x2+1

are of the

form 1
2

ln(x2 + 1) +C, not all antiderivatives of the complex-variable function z
z2+1

are of the

form 1
2
Log(z2 + 1) +C. Only the antiderivatives of f in the region Ω have to be of the form

1
2
Log(z2 + 1) + C (see Problem 3 of Homework 6). The reason is that antiderivative of 1

u

is Log(au) where a is any complex constant. This is not the same as Log(u) + const. The
domain of continuity and differentiability of Log(au) is different from that of Log(u).

(b) f(z) = z sin(z2 + 1)

Answer: We will find an antiderivative of f by the substitution rule as we would normally
do with the real-variable function xsin(x2 + 1). Put u = z2 + 1. Then du = 2zdz.∫

z sin(z2 + 1)dz =

∫
(sinu)

(
1

2
du

)
=

1

2
cosu =

1

2
cos(z2 + 1).
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Thus, F (z) = 1
2

cos(z2 + 1) is an antiderivative of f . Since F is the composition of two
entire functions, namely, the cosine function cos(z), and the polynomial z2 + 1. Hence, F is
holomorphic on the entire complex plane.

(c) f(z) = z2Logz

Answer: We will find an antiderivative of f by integration by part as we would normally
do with the real-variable function x2 lnx.

u = Log z, dv = z2dz

du =
1

z
dz, v =

z3

3

We have∫
z2 Log zdz =

∫
udv = uv −

∫
vdu =

1

3
z3 Log z −

∫
z2

3
dz =

1

3
z3 Log z − z3

9
.

Thus, F (z) = 1
3
z3Log(z)− 1

9
z3 is an antiderivative of f . Note that the first term of f is the

multiplication of z3 and Logz and the second term is an entire function −1
9
z3. Thus F is

holomorphic in the region
C \ R≤0

Exercise 4. Evaluate the complex integrals
∫
γ
f(z) where f and γ are given as follows.

Clearly mention the method/theorem you use.

(a) f(z) = z̄ and γ is the square with vertices at (−1,−1), (1,−1), (1, 1), (−1, 1) positively
oriented.

Answer: We will use the definition of line integral (because f has no antiderivatives). Let
us divide γ into 4 pieces: γ1, γ2, γ3, γ4 (see the graph below)

3



where

γ1(t) = t− i, t ∈ [−1, 1]

γ2(t) = 1 + it, t ∈ [−1, 1]

γ3(t) = −t+ i, t ∈ [−1, 1]

γ4(t) = −1− it, t ∈ [−1, 1]

Then ∫
γ

z̄ dz =

∫
γ1

z̄ dz +

∫
γ2

z̄ dz +

∫
γ3

z̄ dz +

∫
γ4

z̄ dz

=

∫ 1

−1
γ1(t)γ

′

1(t)dt+

∫ 1

−1
γ2(t)γ

′

2(t)dt+

∫ 1

−1
γ3(t)γ

′

3(t)dt+

∫ 1

−1
γ4(t)γ

′

4(t)dt

=

∫ 1

−1
t− i dt+

∫ 1

−1
1 + it (i) dt+

∫ 1

−1
−t+ i(−1) dt+

∫ 1

−1
−1− it(−i) dt

=

∫ 1

−1
(t+ i)dt+

∫ 1

−1
(1− it)idt+

∫ 1

−1
(−t− i)(−1)dt+

∫ 1

−1
(−1 + it)(−i)dt

= 8i

(b) f(z) = |z|2 and γ is the ellipse x2 + y2

4
= 1 negatively oriented.

Answer: One can plot the ellipse with the command ContourPlot in Mathematica (Fig-
ure 1). This command plots the solution set of an equation (or system of equations).

ContourPlot[{x^2 + y^2/4 == 1}, {x, -2, 2}, {y, -2, 2}, Axes -> True]

The ellipse has parametrization x(t) = cos t, y(t) = 2 sin t where 0 ≤ t ≤ 2π. Unfortunately,
this parametrization gives a positive orientation on the ellipse. One has to reverse the
orientation. To do so, we simply replace t with 0 + 2π − t = 2π − t. Now we have x(t) =
cos(2π − t) = cos t and y(t) = 2 sin(2π − t) = −2 sin t. Thus,

γ(t) = cos t− 2i sin t, t ∈ [0, 2π].

Thus, ∫
γ

|z|2dz =

∫ 2π

0

|γ(t)|2γ′(t)dt =

∫ 2π

0

(
cos2t+ 4sin2t

)
(− sin t− 2i cos t)dt.

One can split the integral into the real part and imaginary part:∫
γ

|z|2dz = −
∫ 2π

0

(
cos2t+ 4sin2t

)
sin tdt− 2i

∫ 2π

0

(
cos2t+ 4sin2t

)
cos tdt
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Figure 1:

One can use the fact that sin2 t = 1− cos2 t and cos2 t = 1− sin2 t to compute each integral.
Each is equal to zero. Thus, ∫

γ

f(z)dz = 0

(c) f(z) = z2+1
z3+3z+1

and γ is the part of parabola y = x2 from x = 0 to x = 2.

Answer: We use the substitution w = z3 + 3z + 1. Note that dw = 3(z2 + 1)dz. Thus,∫
γ

z2 + 1

z3 + 3z + 1
dz =

1

3

∫
η

1

w
dw (1)

where η is the image of γ under the function g(z) = z3 + 3z + 1. Knowing that γ has
parametrization

γ(t) = x(t) + iy(t) = t+ it2, t ∈ [0, 2]

we can draw η by Mathematica as follows (Figure 2).

g[z_] := z^3 + 3*z + 1

ParametricPlot[ReIm[g[t + I*t^2]], {t, 0, 2}]

In other words, η(t) = g(γ(t)) = γ(t)3 + 3γ(t) + 1. The endpoints of η are

η(0) = γ(0)3 + 3γ(0) + 1 = 1

η(2) = γ(2)3 + 3γ(2) + 1 = −81− 4i
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Figure 2:

We see that η intersects the negative real line. This implies that η doesn’t lie entirely in the
region where Logw is holomorphic. One needs to choose a different antiderivative of 1

w
so

that the η lies entirely in the region of holomorphicity of that function. Let us choose the
following antiderivative of 1

w
:

G(w) = Log
(
e−i

π
2w
)

= Log(−iw)

The region where G(w) is an antiderivative of 1/w is the whole complex plane except for the
red line in Figure 3. This region contains the entire η. Thus, one can use FTC at (1):

Figure 3:

∫
η

1

w
dw = G(η(2))−G(η(0)) = G(−81−4i)−G(1) = Log(−4+81i)−Log(−i) ≈ 4.3957+3.1909i

Therefore, ∫
γ

z2 + 1

z3 + 3z + 1
dz =

1

3

∫
η

1

w
dw ≈ 1.4652 + 1.0637i

(d) f(z) = z3ez where γ is the part of the hyperbola y = 1
x

from x = 2 to x = 1.

Answer: By doing integration by part three times (in the manner of Problem 3c), we see
that F (z) = (z3 − 3z2 + 6z − 6)ez is an antiderivative of f in C. It is an antiderivative of
f in the whole complex plane. Thus, one can apply FTC. The starting point of γ is 2 + 1

2
i.

The end point of γ is 1 + i. You can use the command ParametricPlot or Plot to plot γ.
(Please try it!) ∫

γ

f(z) dz = F (1 + i)− F
(

2 + i
1

2

)
= −5.43304− 24.7084i
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(e) f(z) = zLogz where γ is the unit circle centered at the origin positively oriented.

Answer: By integration by part (in the manner of Problem 3c), we see that F (z) = z2

2
Logz−

z2

4
is an antiderivative of f in C\R≤0. Because γ doesn’t lie entirely in C\R≤0, we cut γ with

a small precision. Let γε be the circle from the point A = ei(−π+ε) to the point B = ei(π−ε).
We can use the FTC for the path γε. Then

Figure 4:

∫
γ

z Log zdz =lim
ε→0

∫
γε

z Log zdz =lim
ε→0

(
F
(
ei(π−ε)

)
− F (ei(−π+ε))

)
= · · ·

(f) f(z) = zi where γ is the unit circle centered at the origin positively oriented.

Answer: Note that f(z) has an antiderivative F (z) = 1
i+1
zi+1 in the region C\R≤0. Because

γ doesn’t lie entirely in this region, we cut γ the same way as Part (e).

(g) f(z) = z2+1
z+2

and γ is the unit circle centered at the origin negatively oriented.

Answer: f(z) is holomorphic in the region enclosed by the unit circle, a simple closed curve.
Then Cauchy-Goursat Theorem yields∫

γ

z2 + 1

z + 2
dz = 0

.
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(h) f(z) = sin z and γ is the unit circle centered at the origin negatively oriented.

Answer: sin z is an entire function, thus Cauchy-Goursat Theorem implies∫
γ

sin z dz = 0

since γ is a simple closed curve.

(i) f(z) = ez

z2+1
and γ is the triangle with vertices at (−1, 0), (1, 0), (0, 2) positively oriented.

Answer: Rewrite f(z) as

ez/(z + i)

z − i
=

g(z)

z − i
where g(z) = ez

z+i
. We see that g is holomorphic inside the triangle. This allows us to use

Cauchy’s Integral Formula∫
γ

f(z) dz =

∫
γ

g(z)

z − i
dz = 2πig(i) = πei

(j) f(z) = ez

(z2+1)2
and γ is the circle with radius 2 centered at the origin negatively oriented.

Answer: We can rewrite

f(z) =
ez

(z − i)2(z + i)2

f is holomorphic everywhere except at ±i. Because γ encloses two singular points, we
need to split γ so that each curve encloses only onw singular point. Let us split γ the way
indicated on the picture. Note that γ1 and γ2 are negatively oriented. Then
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Figure 5:

∫
γ

ez

(z − i)2(z + i)2
dz =

∫
γ1

+

∫
γ2

=

∫
γ1

ez/(z + i)2

(z − i)2
dz +

∫
γ2

ez/(z − i)2

(z + i)2
dz

Put g(z) = ez/(z + i)2 and h(z) = ez/(z − i)2. By the general Cauchy’s Integral Formula,∫
γ1

g(z)

(z − i)2
dz = −2πig′(i) =

(
−1

2
+
i

2

)
eiπ.∫

γ1

h(z)

(z + i)2
dz = −2πih′(−i) =

(
1

2
+
i

2

)
e−iπ.

Therefore, ∫
γ

ez

(z2 + 1)2
dz =

(
−1

2
+
i

2

)
eiπ +

(
1

2
+
i

2

)
e−iπ

(k) f(z) = 1
z2+z+1

and γ is the circle with radius 2 centered at the origin positively oriented.

Answer: f is holomorphic everywhere except at z’s such that z2 + z + 1 = 0. Solutions to
this equation are z1 = −1/2−

√
3i/2 and z2 = −1/2 +

√
3i/2. Please sketch them! We then

split γ into two curves like in Part (j) for the same reason (except that both of them are
positively oriented). Use Cauchy’s Integral Formula∫

γ

f(z)dz =

∫
γ

1

(z − z1)(z − z2)
dz =

∫
γ1

1/(z − z1)
z − z2

dz +

∫
γ2

1/(z − z2)
z − z1

dz

9



= 2πi
1

z2 − z1
+ 2πi

1

z1 − z2
= 0.

(l) f(z) = 1
(z2+2z+2)(z−1) and γ is parametrized by{

x(t) = 3 cos t cos 3t,

y(t) = 3 sin t cos 3t
t ∈ [0, 2π]

Answer: First, we split the curve γ into three simple curves as shown in the graph below

f is holomorphic everywhere except at z1 = 1, z2 = −1 + i, z3 = −1 − i. Use the same
method as in Part (j) and (k), we get ∫

γ

f(z) dz = 0

Exercise 5. To each of the following complex functions f ,

1. f(z) = 1− 1
z2

2. f(z) = z − 1
z3

3. f(z) = i√
1−z2

answer the following questions:
(a) Plot the Polya vector field associated with f . (This is the velocity field of an ideal flow.)

Answer: (1) f(z) = 1− 1
z2

:

f[z_] := 1-z^(-2)

VectorPlot[{Re[f[x + I*y]], -Im[f[x + I*y]]}, {x, -2, 5}, {y, -2, 5},

VectorStyle -> Blue]
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(2) f(z) = z − 1
z3

:

f[z_] := z-z^(-3)

VectorPlot[{Re[f[x + I*y]], -Im[f[x + I*y]]}, {x, -2, 5}, {y, -2, 5},

VectorStyle -> Blue]
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(3) f(z) = i√
1−z2 :

f[z_] := I/(Sqrt[1 - z^2])

VectorPlot[{Re[f[x + I*y]], -Im[f[x + I*y]]}, {x, -1.5, 1.5}, {y, -1.5, 1.5},

VectorScale -> Automatic, VectorStyle -> Blue]

12



(b) Determine a complex potential Φ of the flow.

Answer: (1) z + 1
z

is an antiderivative of 1− 1
z2

. Thus,

Φ(z) = x+ iy +
1

x+ iy
=

(
x+

x

x2 + y2

)
+ i

(
y − y

x2 + y2

)
is a complex potential of f(z) = 1− 1

z2
.

(2) Similarly, z2

2
+ 1

2z2
is an antiderivative of z − 1

z3
. So,

Φ(z) =
(x+ iy)2

2
+

1

2(x+ iy)2
=
x2 − y2

2

(
1 +

1

(x2 + y2)2

)
+ ixy

(
1− 1

(x2 + y2)2

)

(3)
Φ(z) = iArc sin z

(c) Write the equation of streamlines of the flow. Then plot the streamlines.

Answer: (1) The imaginary part of the complex potential Φ is ψ(x, y) = y− y
x2+y2

. Because
a streamline is a level set of ψ, we conclude that the equation of the streamlines is

y − y

x2 + y2
= C.

We can plot the streamlines by Mathematica as follows.

f[z_] := 1 - z^(-2)

StreamPlot[{Re[f[x + I*y]], -Im[f[x + I*y]]}, {x, -2, 5}, {y, -2, 5},

StreamStyle -> Orange]
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(2) The imaginary part of the complex potential Φ is ψ(x, y) = xy
(

1− 1
(x2+y2)2

)
. Because

a streamline is a level set of ψ, we conclude that the equation of the streamlines is

xy

(
1− 1

(x2 + y2)2

)
= C.

We can plot the streamlines by Mathematica as follows.

f[z_] := z - z^(-3)

StreamPlot[{Re[f[x + I*y]], -Im[f[x + I*y]]}, {x, -2, 5}, {y, -2, 5},

StreamStyle -> Orange]
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(3) Let us put w = Arcsinz = a + ib. Here a and b are functions of x and y. Then
Φ(z) = iw = −b + ia. The imaginary of Φ is ψ = a. A streamline is a level set of ψ, which
has equation ψ(x, y) = C. Thus, on each streamline we have a = C. There is no constraint
on b. Let us write C or a and t for b to emphasize the fact that a is a constant and b is
arbitrary. Then

w = Arcsinz = C + it

We have

z = sinw =
eiw − e−iw

2i
=
ei(C+it) − e−i(C+it)

2i
= sinC cosh(t) + i cosC sinh(t).

Therefore, the parametric equation (in complex form) of each streamline is

z(t) = sinC cosh(t) + i cosC sinh(t).

(d) Imagining that the flow you just plotted is a physical flow, can you determine the phys-
ical boundaries (i.e. walls and rigid obstacles) of the flow?

Answer: (1) For the function f(z) = 1− 1
z2

, we can see from the graph below that the phys-
ical boundaries are x-axis and the unit circle centered at the origin. This is the streamline
with C = 0. Indeed, the equation

ψ(x, y) = y − y

x2 + y2
= 0

gives y = 0 (the horizontal line) and x2 + y2 = 1 (the unit circle).
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(2) For the function f(z) = z − 1
z3

, we can see from the graph below that the physi-
cal boundaries are: x-axis, y-axis, and the unit circle centered at the origin. This is the
streamline with C = 0. Indeed, the equation

ψ(x, y) = xy

(
1− 1

(x2 + y2)2

)
= 0

gives x = 0 (the vertical line), y = 0 (the horizontal line) and x2 + y2 = 1 (the unit circle).

(3) For the function f(z) = i√
1−z2 , we can see from the graph below that the physical

boundaries the line (−∞,−1) ∪ (1,∞) on the real line. The flow is running through a hole
on a punctured wall. The wall is the whole real line. The hole is at the interval (−1, 1).
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The punctured wall is made up two streamlines corresponding to C = ±π/2. Indeed, the
equation

z(t) = sin
(π

2

)
cosh(t) + i cos

(π
2

)
sinh(t)

gives
z(t) = cosh(t).

This is the the line (1,∞). The equation

z(t) = sin
(
−π

2

)
cosh(t) + i cos

(
−π

2

)
sinh(t)

gives
z(t) = − cosh(t).

This is the the line (−∞,−1).

f[z_] := I/Sqrt[1 - z^2]

p = StreamPlot[{Re[f[x + I*y]], -Im[f[x + I*y]]}, {x, -2, 2}, {y, -2,

2}, StreamStyle -> Orange]

q1 = ParametricPlot[{Cosh[t], 0}, {t, -3, 3}]

q2 = ParametricPlot[{-Cosh[t], 0}, {t, -3, 3}]

Show[p, q1, q2]
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