Homework 7

Due 6/5/2020

1. Let $f(z)=u(x, y)+i v(x, y)$ be a holomorphic function in region $D \subset \mathbb{C}$. Show that the vector field $P(x, y)=(u(x, y),-v(x, y))$ is incompressible and irrotational. In other words, show that $\operatorname{div} P=0$ and $\operatorname{curl} P=0$.
Note: You can review the definition of divergence and curl of a $2 D$ vector field in the supplemental material "Vector fields and complex integral" posted on Canvas and the course website.
2. Let $\Phi(z)=\phi(x, y)+i \psi(x, y)$ be an antiderivative of function $f(z)=u(x, y)+i v(x, y)$ in region $D \subset \mathbb{C}$. Show that at each point $(x, y) \in D$ the vector $P(x, y)=(u(x, y),-v(x, y))$ tangent to the level set of ψ at passes through (x, y). (For this reason, the level sets of ψ are called the streamlines of vector field P.)
Hint: use the fact that the level sets of ψ are perpendicular to the gradient vectors of ψ.
3. Determine an antiderivative of the following function. Then identify the region where that antiderivative is holomorphic.
(a) $f(z)=\frac{z}{z^{2}+1}$
(b) $f(z)=z \sin \left(z^{2}+1\right)$
(c) $f(z)=z^{2} \log z$
4. Evaluate the complex integrals $\int_{\gamma} f(z)$ where f and γ are given as follows. Clearly mention the method/theorem you use.
(a) $f(z)=\bar{z}$ and γ is the square with vertices at $(-1,-1),(1,-1),(1,1),(-1,1)$ positively oriented.
(b) $f(z)=|z|^{2}$ and γ is the ellipse $x^{2}+\frac{y^{2}}{4}=1$ negatively oriented.
(c) $f(z)=\frac{z^{2}+1}{z^{3}+3 z+1}$ and γ is the part of the parabola $y=x^{2}$ from $x=0$ to $x=2$.
(d) $f(z)=z^{3} e^{z}$ where γ is the part of the hyperbola $y=\frac{1}{x}$ from $x=2$ to $x=1$.
(e) $f(z)=z \log z$ where γ is the unit circle centered at the origin positively oriented.
(f) $f(z)=z^{i}$ where γ is the unit circle centered at the origin positively oriented.
(g) $f(z)=\frac{z^{2}+1}{z+2}$ and γ is the unit circle centered at the origin negatively oriented.
(h) $f(z)=\sin z$ and γ is the unit circle centered at the origin negatively oriented.
(i) $f(z)=\frac{e^{z}}{z^{2}+1}$ and γ is the triangle with vertices at $(-1,0),(1,0),(0,2)$ positively oriented.
(j) $f(z)=\frac{e^{z}}{\left(z^{2}+1\right)^{2}}$ and γ is the circle with radius 2 centered at the origin negatively oriented.
(k) $f(z)=\frac{1}{z^{2}+z+1}$ and γ is the circle with radius 2 centered at the origin positively oriented.
(l) $f(z)=\frac{1}{\left(z^{2}+2 z+2\right)(z-1)}$ and γ is parametrized by

$$
\left\{\begin{array}{l}
x(t)=3 \cos t \cos 3 t, \\
y(t)=3 \sin t \cos 3 t
\end{array} \quad t \in[0,2 \pi]\right.
$$

Hint: split γ into three simple curves. Pay attention to the orientation of each curve. Use Cauchy's Integral formula for each curve.

Before doing the following problem, please take a look at the supplemental material called "Vector fields and complex integral" posted on Canvas and course website. Make sure to include the Mathematica codes and figures you use and some brief comments.
5. To each of the following complex functions f,
(1) $f(z)=1-\frac{1}{z^{2}}$
(2) $f(z)=z-\frac{1}{z^{3}}$
(3) $f(z)=\frac{i}{\sqrt{1-z^{2}}}$
answer the following questions:
(a) Plot the Polya vector field associated with f. (This is the velocity field of an ideal flow.)
(b) Determine a complex potential Φ of the flow.
(c) Write the equation of streamlines of the flow. Then plot the streamlines.
(d) Imagining that the flow you just plotted is a physical flow, can you determine the physical boundaries (i.e. walls and rigid obstacles) of the flow?

