Mapping properties of exponential function

In this note, we will use Mathematica to visualize some mapping properties of the exponential function $f(z)=e^{z}$. The methodology explained below is applicable to any complex functions.

Each complex number $z=x+i y$ corresponds to a point at position (x, y) on the plane. Thus, f maps a point to a point. We say that f is a geometric transformation on the plane.

Each point A on the vertical line $x=1$ gets mapped by f to another point (called the image of A under f) on the plane. It is natural to ask: what does the set of all those images as A varies on the line $x=1$ look like?

The line $x=1$ has complex parametrization $z=1+i t$ where $t \in \mathbb{R}$. The plot of the line for $t \in[0,1]$ is as follows (Figure 1).

```
ParametricPlot[{1, t}, {t, 0, 1}]
```

or equivalently

```
ParametricPlot[ReIm[1 + t*I], {t, 0, 1}]
```

The command ReIm returns the list of real part and imaginary part. For example $\operatorname{ReIm}\left[\mathbf{1}+\mathbf{I}^{*} \mathbf{3}\right]$ returns $\{1,3\}$. To declare function f, we use the command:

Figure 1

$$
\mathrm{f}\left[\mathrm{z}_{-}\right]:=\operatorname{Exp}[z]
$$

To plot the image of the line under f, we write (Figure 2)

```
ParametricPlot[ReIm[f[1 + t*I]], {t, 0, 1}, AspectRatio -> Automatic,
    AxesOrigin -> {0, 0}]
```

The option AspectRatio \rightarrow Automatic is to make sure that the scales on the vertical and horizontal axes are the same. The option AxesOrigin $\rightarrow\{\mathbf{0 , 0}\}$ is to make sure that the vertical and horizontal axes meet each other at the origin $(0,0)$.

To get better visualization, we will plot in motion. That is, as we trace points on the line $z=1+i t$ from $t=0$ to $t=1$, we want to see how the images are drawn out. This can be done as follows. For each $s>0$, we sketch the image of line $z=1+i t$ for $t \in[0, s]$. Then allows s to increase from a small positive number, say 0.1, to 1 to see how the images are drawn out (Figure 3). We do so by using the command Manipulate.

```
p[s_] :=
    ParametricPlot[ReIm[1 + t*I], \{t, 0, s\}, AxesOrigin \(\rightarrow\) \{0, 0\},
    PlotRange -> \{\{0, 2\}, \{-1, 2\}\}]
q[s_] :=
    ParametricPlot [ReIm[f[1 + t*I]], \{t, 0, s\}, AxesOrigin -> \{0, 0\},
    PlotRange -> \{\{0, 3\}, \{0, 3\}\}]
Manipulate[\{p[s], q[s]\}, \{s, .1, 1\}]
```


Figure 2

Figure 3

The option PlotRange $\rightarrow\{\{\mathbf{a}, \mathbf{b}\},\{\mathbf{c}, \mathbf{d}\}\}$ is to make sure that we view the graph only within the region $a \leq x \leq b, c \leq y \leq d$. Without specifying PlotRange, the viewing region may change as s varies, which can cause annoyance.

In Figure 3, the plot on the left shows the line $x=1$ as we draw it upward; the plot on the right shows the image of the line under the exponential function.

Can you adjust the above code to draw the image of the line $z=1+$ it as t moves from 0 to 10? What does the shape look like?

