Tentative Schedule for MTH 483/583 Spring 2020

	Monday	Tuesday	Wednesday	Thursday	Friday
Mar./Apr.	30 Introduction	31	1 Algebraic properties of complex numbers	2	3 Geometric representation of complex numbers
Apr.	6 Powers and roots of complex numbers	7	8 HW 1 due Quadratic formula, complex roots of polynomials, exponential function	9	10 Exponential, sine, cosine function of complex variables
Apr.	13 Argument and logarithm as multi-valued functions	14	15 HW 2 due Single-valued branches of multi- valued functions, domain, branch points, branch cuts	16	17 Inverse trigonometric functions of complex variables
Apr.	20 Limit of functions of complex variables	21	22 HW 3 due Continuity, curves on complex plane	23	24 Derivative of functions with complex variables
Apr./May	27 Cauchy-Riemann equations, holomorphic functions	28	29 HW 4 due Differentiation rules, mapping properties of holomorphic maps	30	1 Midterm review
May	4 Midterm (In class)	5	6 Antiderivative of zero function, finding antiderivative	7	8 Complex integration
May	11 Computing complex integrals, geometric interpretation	12	13 HW 5 due Fundamental theorem of Calculus for complex variables	14	15 Cauchy - Goursat theorem
May	18 Cauchy's Integral formula	19	20 HW 6 due Applications of Cauchy's Integral formula	21	22 General Cauchy's Integral formula; complex series
May	25 No class (Memorial Day)	26	27 HW 7 due Taylor series of complex- variabled functions	28	29 Analyticity and holomorphicity; Laurent series
June	1 Application of Laurent series in complex integration; Cauchy's Residue theorem	2	3 HW 8 due Laurent series; Calculus of Residue	4	5 (last day of class) Final review
June	8	9 Final exam 12:00-1:50 PM	10	11	12