Worksheet
4/10/2020

1. Write the following complex numbers in either standard form or polar form.
(a) $e^{e^{i}}$

$$
\begin{aligned}
e^{i}=e^{0+1 \cdot i} & =\overbrace{}^{e^{0} e^{1 \cdot i}}=\cos 1+i \sin 1
\end{aligned}
$$

$$
e^{e^{i}}=e^{\cos 1+i \sin 1}=\frac{e^{\cos 1} e^{i \sin 1}}{\substack{\text { form }}} \begin{gathered}
\cos 1 \\
\text { for }(\sin 1)+i \sin (\sin 1))
\end{gathered}
$$

$$
=\underbrace{e^{\cos 1} \cos (\sin 1)+i e^{\cos 1} \sin (\sin 1)}_{\text {standard form }}
$$

$$
\begin{aligned}
\left(\text { b) } \begin{array}{rl}
\tan (2+2 i) \\
=\frac{\sin (2+2 i)}{\cos (2+2 i)} & =\frac{\frac{e^{i(2+2 i)}-e^{-i(2+2 i)}}{2 i}}{\frac{e^{i(2+2 i)}+e^{-i(2+2 i)}}{2}}=\frac{1}{i} \frac{e^{i(2+2 i)}-e^{-i(2+2 i)}}{e^{i(2+2 i)}+e^{-i(2+2 i)}} \\
& =\frac{1}{i} \frac{e^{-2+2 i}-e^{2-2 i}}{e^{-2+2 i}+e^{2-2 i}} \\
& =\frac{1}{i} \frac{e^{-2}(\cos 2+i \sin 2)-e^{2}(\cos (-2)+i \sin (-2))}{e^{-2}(\cos 2+i \sin 2)+e^{2}(\cos (-2)+i \sin (-2))} \\
& =\frac{1}{i} \frac{\left(e^{-2}-e^{2}\right) \cos 2+i\left(e^{-2}+e^{2}\right) \sin 2}{\left(e^{-2}+e^{2}\right) \cos 2+i\left(e^{-2}-e^{2} l \sin 2\right.} \\
\approx \frac{1}{i} \frac{1.50931+i 3.42095}{-1.56563-i 3.25783} \approx
\end{array}\right.
\end{aligned}
$$

2. Solve for all complex roots of the equation $z^{3}+3 z^{2}+1=0$.

Change of variable $x=z+1$, of equivalently $z=x-1$.

$$
(x-1)^{3}+3(x-1)^{2}+1=0
$$

or $x^{3}-3 x+3=0$.
Here $p=-3$ and $q=3$.

$$
\begin{aligned}
u & =q^{2}+\frac{4 p^{3}}{27}=5 . \\
t=u^{3} & =\frac{1}{2}(-q+\sqrt{\Delta})=\frac{1}{2}(-3+\sqrt{5}) . \\
s=v^{3} & =\frac{1}{2}(-q-\sqrt{4})=\frac{1}{2}(-3-\sqrt{5}) .
\end{aligned}
$$

In poler form,

$$
\begin{aligned}
& t=-r_{1}=r_{1} e^{i \pi} \\
& s=-r_{2}=r_{2} e^{i \pi}
\end{aligned}
$$

where

$$
\begin{aligned}
& r_{1}=|t|=\frac{1}{2}(3-\sqrt{5})>0, \\
& r_{2}=|s|=\frac{1}{2}(3+\sqrt{5})>0 .
\end{aligned}
$$

There are three values of u :

$$
\begin{aligned}
& u_{1}=\sqrt[3]{r_{1}} e^{i \frac{\pi}{3}} \approx 0.362781+i 0.628356 \\
& u_{2}=\sqrt[3]{r_{1}} e^{i\left(\frac{0}{3}+\frac{2 \pi}{3}\right)}=-\sqrt[3]{r_{1}} \approx-0.725563
\end{aligned}
$$

$$
u_{3}=\sqrt[3]{r_{1}} e^{i\left(\frac{\pi}{3}+\frac{4 w}{3}\right)}=\sqrt[3]{r_{1}} e^{i \frac{5 \pi}{3}} \approx 0.362781-i 0.628356
$$

There are also three values of v :

$$
\begin{aligned}
& v_{1}=\sqrt[3]{r_{2}} e^{i \frac{\pi}{3}} \\
& v_{1}=\sqrt[3]{r_{2}} e^{i \pi_{0}}=-\sqrt[3]{r_{2}} \approx 1.37824 \\
& v_{3}=\sqrt[3]{r_{2}} e^{i \frac{5 \pi}{3}}
\end{aligned}
$$

There are g combinations of u_{1}, u_{2}, u_{3} and v_{1}, v_{2}, v_{3}. We only choose the pairs (u, v) such that $u v=-\frac{p}{z}=1$. Because

$$
\arg (u v)=\arg (u) t \arg (v) \quad(\text { in } \operatorname{modulo} 2 \pi)
$$

we must have

$$
\arg (u)+\arg (v)=\arg (1)=0 \quad(\text { in modulo } 2 \pi) .
$$

Therefore, we choose the following pairs:

$$
\begin{aligned}
& x=u_{1}+v_{3} \approx \ldots \\
& x=u_{3}+v_{1} \approx \ldots \\
& x=u_{2}+v_{2} \approx \ldots
\end{aligned}
$$

Then the roots z of the original equation are $z=x-1 \approx \ldots$

