1. Write the following complex numbers in either polar or standard form.

$$
\arcsin \left(\frac{1}{2}\right)=\frac{1}{i} \log \left(i \frac{1}{2}+\sqrt{1-\left(\frac{1}{2}\right)^{2}}\right)=\frac{1}{i} \log \left(\frac{i}{2} \pm \frac{\sqrt{3}}{2}\right)^{\text {real squat }} \text { root }
$$

complex
square root

- Il us sign:

$$
\begin{aligned}
\frac{1}{i} \log \left(\frac{i}{2}+\frac{\sqrt{3}}{2}\right) & =\frac{1}{i}\left(\ln 1+i\left(\frac{\pi}{6}+k 2 \pi\right)\right) \\
& =\frac{\pi}{6}+k 2 \pi \quad(k \in t)
\end{aligned}
$$

- Minus sign: $\frac{1}{i} \log \left(\frac{i}{2}-\frac{\sqrt{3}}{2}\right)=\frac{1}{6}\left(\ln 1+i\left(\frac{5 \pi}{6}+l 2 \pi\right)\right)=\frac{5 \pi}{6}+l 2 \pi(l 6 \pi)$.

Therefore, $\quad \arcsin \left(\frac{1}{2}\right)=\left\{\frac{\pi}{6}+k 2 \pi: k \in \mathbb{Z}\right\} \cup\left\{\frac{5 \pi}{6}+l 2 \pi: l \in \mathbb{Z}\right\}$
(b) $\operatorname{Arcsin}(2)$

$$
\begin{aligned}
& \operatorname{Arcsin} 2= \frac{1}{i} \log \left(i 2+\sqrt{1-2^{2}}\right)=\frac{1}{i} \log (i 2+\sqrt{-3} \\
& \begin{array}{c}
7 \\
\text { using principal } \\
\text { logarithm }
\end{array} \\
& \sqrt{-3}=(-3)^{1 / 2}=e^{\frac{1}{2} \log (-3)}=e^{\frac{1}{2}(\ln 3+i \pi)} \\
&=e^{\frac{1}{2} \ln 3+i \frac{\pi}{2}}=e^{\frac{1}{2} \ln 3} \underbrace{e^{i \frac{i \pi}{2}}}_{i}=i \sqrt{3} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{Arcsin} 2=\frac{1}{i} & \log (i 2+i \sqrt{3})=\frac{1}{i} \log ((2+\sqrt{3}) i)=\frac{1}{i} \log \left((2+\sqrt{3}) e^{i \frac{\pi}{2}}\right) \\
& =\frac{1}{i}\left(\ln (2+\sqrt{3})+i \frac{\pi}{2}\right) \\
\operatorname{Arcsin} 2 & =\frac{\pi}{2}-i \ln (2+\sqrt{3}) .
\end{aligned}
$$

2. Find a formula for $\arctan z$

We solve for w in terms of z from the equation $\tan \omega=z$.

$$
\tan \omega=\frac{\sin \omega}{\cos \omega}=\frac{1}{c} \frac{e^{i \omega}-e^{-\omega \omega}}{e^{i \omega}+e^{-i \omega}} .
$$

Put $u=e^{i \omega}$. Then:

$$
z=\tan \omega=\frac{1}{i} \frac{u-u^{-1}}{u+u^{-1}}=\frac{1}{i} \frac{u^{2}-1}{u^{2}+1}
$$

From here, we get

$$
u^{2}-1=i t\left(u^{2}+1\right)
$$

which leads to

$$
u^{2}=\frac{1+i b}{1-i t} .
$$

Thus, $u=\sqrt{\frac{1+i z}{1-i t}}$.
Complex square root (there are two of them)
Thus, $e^{c \omega}=\sqrt{\frac{1+i z}{1-i z}}$.
we get $\quad i \omega=\log \sqrt{\frac{1+i z}{1-i t}}$.
Thus,

$$
\arctan z=w=\frac{1}{i} \log \sqrt{\frac{1+i z}{1-i z}}
$$

