To each of the following functions, determine what curves) on the complex plane should be removed so that the function is continuous.
(a) 2^{z} (principal logarithm is used)
$f(z)=2^{t}=e^{z \log 2}$, which is a composite map

Because each component function is continuous everywhere on \mathbb{C}, the composite function is also continuous everywhere on \mathbb{C}.

Conclusion: no paints need to be removed.
(b) $\sqrt{z^{2}-1}$ (principal logarithm is used)

$$
f(z)=\left(z^{2}-1\right)^{1 / 2}=e^{\frac{1}{2} \log \left(z^{2}-1\right)} .
$$

This is a composite function:

$$
z \xrightarrow[\text { Continuous }]{\text { polynomial }} z^{2}-1 \xrightarrow{\log } \log (z^{2}-1 \underbrace{\frac{\text { constant }}{\text { multi. by }}}_{\text {continuous }} \frac{1}{2} \log \left(z^{2}-1\right) ~\{\exp \} \text { continnows }
$$

The only places where f could possibly be discontinuous are points z on the complex plane such that $z^{2}-1 \in \mathbb{R}_{\leq 0}$. With $z=x+1$, we have

$$
z^{2}-1=(x+i y)^{2}-1=\left(x^{2}-y^{2}-1\right)+i 2 x y .
$$

For this point to be on $\mathbb{R}_{\leq 0}$, we need

$$
\left\{\begin{aligned}
x^{2}-y^{2}-1 & \leq 0 \quad(*) \\
2 x y & =0
\end{aligned} \quad \text { either } x=0 \text { or } y=0\right.
$$

If $x=0$ then the inequality (x) becomes $-y^{2}-1 \leq 0$. This is true for any $y \in \mathbb{R}$.
If $y=0$ then the inequality (x) becomes $x^{2}-1 \leq 0$. This is true for $-1 \leq x \leq 1$.

Therefore, if we remove every pout on the
 imaginnorg anis and the segment $[-1,1]$ on the real comus, we will get a contiunows function, In other woods, f is continuous on $\mathbb{C} \backslash\left(\left\{z_{2} \operatorname{Rez}=0\right\} \cup\{z: \operatorname{Im} z=0,-1 \leq \operatorname{Rez}\{(\})\right.$

