Worksheet

5/1/2020

1. Write each of the following complex numbers in standard form $a+i b$ where a and b are numerical values. Round to 4 digits after the decimal point.
(a) $\log \left(e^{i \frac{19 \pi}{4}}\right)$
(b) $\left|\frac{(i+1)^{10}}{(2 i+1)^{8}}\right|$
(c) $(2 i-1)^{i+1} \quad$ (principal logarithm is used)
(d) $\operatorname{Arg}\left(e^{i+\sqrt{2}}\right)$
2. Find all $z \in \mathbb{C}$ that satisfy the equation

$$
\tan z=1
$$

3. Show the following trigonometric identities:
(a) $\sin ^{2} z+\cos ^{2} z=1$
(b) $\sin ^{2} z=\frac{1-\cos (2 z)}{2}$
(c) $\cos ^{2} z=\frac{1+\cos (2 z)}{2}$
(d) $\sin z+\cos z=\sqrt{2} \sin \left(z+\frac{\pi}{4}\right)$
4. To each of the following functions, determine what curve(s) on the complex plane should be removed so that the function is continuous.
(a) $\frac{z+1}{z^{3}+i}$
(b) $\sqrt{z^{2}-1}$ (principal logarithm is used)
(c) $\sqrt{z+1} \sqrt{z-1}$ (principal logarithm is used)
5. Find the following limits:
(a)

$$
\lim _{z \rightarrow \frac{\pi}{3}} \frac{\cos z}{\sin z+1}
$$

(b)

$$
\lim _{z \rightarrow \infty} \frac{1}{\sin z}
$$

(c)

$$
\lim _{z \rightarrow 2 i} \log \left(z^{2}+1\right)
$$

6. Solve for all complex roots of the cubic equation

$$
z^{3}+3 z^{2}-6 z-1=0
$$

How many real roots does it have?
(1) (a)

$$
\log \left(e^{i \frac{i g}{\varepsilon} \pi}\right)=\underbrace{\ln 1}_{=0}+\underbrace{\operatorname{Arg}\left(e^{\left.i \frac{19 \pi}{4}\right)}\right.}_{=\frac{19 \pi}{4}+k 2 \pi \text { where } k \text { cs }}
$$

chosen such that $\frac{15 \pi}{\epsilon}+k 2 \pi \in[-\pi, \bar{\pi}]$.
The only integer k that satisfies this condition is $k=-2$.

$$
\frac{(5 \pi}{4}+(-2) 2 \pi=\frac{3 \pi}{4} .
$$

Therefore,

$$
\log \left(e^{i \frac{15 \operatorname{c}}{4}}\right)=i \frac{3 \pi}{4} \approx 0+2.3562 i
$$

(6)

$$
\begin{array}{r}
\left|\frac{(i+1)^{10}}{(2 i+1)^{8}}\right|=\frac{\left|(i+1)^{10}\right|}{\left|(2 i+1)^{8}\right|}=\frac{|i+1|^{10}}{\left|z_{i}+1\right|^{8}}=\frac{\left(\sqrt{1^{2}+1^{2}}\right)^{10}}{\left(\sqrt{2^{2}+1^{2}}\right)^{10}} \\
=\frac{(\sqrt{2})^{10}}{(\sqrt{5})^{8}}=\frac{2^{5}}{5^{8}}=\frac{32}{625}=0.0512+0 i
\end{array}
$$

(l)

$$
\begin{aligned}
(2 i-1)^{i+1} & =e^{(i+1) \log (2 i-1)} \\
& =e^{(i+1)(a+b i)}
\end{aligned}
$$

where $a=\ln |2 i-1|=\ln \sqrt{5} \approx 0.8047$

$$
b=\operatorname{Arg}(2 i-1)=\arctan \left(-\frac{1}{2}\right)+\pi \approx 2.6779 .
$$

Continue:

$$
\text { nc: } \begin{aligned}
& (2 i-1)^{i+1}=e^{a-b+i(a+b)} \\
= & e^{a-b} \cos (a+b)+i e^{a-b} \sin (a+b) \\
\approx & \cdots+i
\end{aligned}
$$

(d) $\operatorname{Arg}\left(e^{i+\sqrt{2}}\right)=\operatorname{Arg}(\underbrace{e^{\sqrt{2}} e^{i}}_{\text {polar form } r e^{i \theta}}=1$. with $r=e^{\sqrt{2}}$ and $\theta=1$
(4) (a) $f(z)=\frac{z t 1}{z^{3}+i}$

This function is a rational function (i.e. quotient of two polynomials). It is continuous everywhere except at points it where $z^{3}+i=0$.
We solve for then values of z :

$$
\begin{aligned}
z^{3} & =-i \\
\leadsto z & =\sqrt[3]{-i}=\sqrt[3]{1 \cdot e^{-\frac{\pi}{2} i}}=e^{\left(-\frac{\pi}{6}+k \frac{2 \pi}{3}\right) i} \quad \text { for } k=0,1,2
\end{aligned}
$$

The function f is continues everywhere except at z_{1}, z_{2}, z_{3}.
(b) See solution on worksheet 4/29.

One should remove the orange lines.
(c)

$$
f(z)=\sqrt{z-1} \sqrt{z+1} .
$$

f is the product of

$$
\begin{aligned}
& g(z)=\sqrt{z-1}=e^{\frac{1}{2} \log (z-1)}, \\
& h(z)=\sqrt{z+1}=e^{\frac{1}{2} \log (z+1)}
\end{aligned}
$$

g is continuous everywhere except at those pouts a such that $z-1 \in \mathbb{R}_{0}$. To knew where those points are, we write $z-1=t$ where $t \in \mathbb{R}, t \leq 0$. Then $z=t+1$, which is any real number ≤ 1.

Similarly, h is continuous everywhere except at those points z such that $z+1 \in \mathbb{R}_{\leq 0}$. They are real numbers $\leq-\alpha$.

Take the union of the "bad" z's Ci.e. the points at which either g or h is discontinuous): $\mathbb{R}_{\leq 1}$

Conclusion: f is continuous anywhere in $\mathbb{C} \backslash \mathbb{R}_{\leq-1}$.
Note: It is possible that f is continuous at certain points on \mathbb{R}_{5-1} becaun the jump of g may be compensated by the jump of h. In
feet, one can check (geometrically) that: at any point $z_{0} \in \mathbb{R}_{<-1}$,
 when one crosses the real axis, g is suddenly scaled by $e^{i \pi}=-1$ and h is also suddenly scaled by $e^{i \pi}=-1$.
The product $g(z) h(z)$ doesn't suddenly change its sign. One can conclude from here that $f(t)$ is continuous anywhere on $\mathbb{C} \backslash[-1,1] \quad$ (see picture below)

The problem only arks as to remove some curves to make $f(2)$ continuous. It dresn't work us to determine the region of continuity (ie. the set of all pouts z where f is continuous), so the analysis written in green ink is not necessary.

