For each function $f(z)$ given below, find an antiderivative $F(z)$. Determine the region where F is holomorphic. Determine the region where f is holomorphic.
(a) $f(z)=z \log z$

$$
I=\int z \log z d z
$$

Put $\quad u=\log z$

$$
d v=z R z
$$

Then $\quad d_{u}=\frac{1}{z} d z$ and $v=\frac{z^{2}}{2}$.
By Integration by part,

$$
\begin{aligned}
I=\int u d v=u v & \int v d u=\frac{z^{2}}{2} \log z-\int \frac{z^{2}}{2} \frac{1}{z} d z \\
& =\frac{z^{2}}{2} \log z-\int \frac{z}{2} d z \\
& =\frac{z^{2}}{2} \log z-\frac{z^{2}}{4}+C
\end{aligned}
$$

An autideriation of $f(z)$ is

$$
F(z)=\frac{z^{2}}{2} \log z-\frac{z^{4}}{4} .
$$

F is holomorphic on $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
(b) $f(z)=\frac{z}{z^{2}+1}$

$$
I=\int \frac{z}{z^{2}+1} d z
$$

Put $u=z^{2}+1$. Then $d u=2 z l z$.

$$
I=\int \frac{1}{2} \frac{d u}{u}=\frac{1}{2} \int \frac{1}{u} d u
$$

There are many autideriontives of $\frac{1}{u}$. One of them is $\log u$.

$$
I=\frac{1}{2} \log (u)=\frac{1}{2} \log \left(z^{2}+1\right) .
$$

An antiderivertion of $f(z)$ is

$$
f(k)=\frac{1}{2} \log \left(z_{t}^{2}+1\right)
$$

In HW 5, we showed that $\log \left(t^{2}+1\right)$ © continuous evoryshere eneupt on the line

$$
\left\{\begin{array} { l }
{ x = 0 } \\
{ y \geqslant 1 }
\end{array} \text { and } \left\{\begin{array}{l}
x=0 \\
y \leq-1 .
\end{array}\right.\right.
$$

Although f is continuous on $\mathbb{C}\{ \pm \pm i\}$, it docosn't have a n antidecivetive on $\mathbb{C} \backslash\{ \pm i\}$.

Theorem: If G is a simply connected and f is holomorphic on G then t has an antiderivative on G. we will show this thasem later in the course.

