Worksheet 5/18/2020

With $z_1 = 3 + i$, $z_2 = 1 + i$, $z_3 = 1 + 2i$, let γ_1 be the line segment from z_1 to z_3 , and γ_2 be the path consisting of the line segment from z_1 to z_2 and the line segment from z_2 to z_3 . Find the following integrals:

(a)
$$\int_{M} z dz$$

(b) $\int_{M} z dz$
 $\int_{L_{\infty}} z dz$
 T_{1} is a line segnent that passes through two points v_{1} and v_{2} .
 $Thus_{1}$ $y = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} (x - x_{1}) + y_{1} = \frac{x - 1}{1 - 3} (x - 3) + 1$
 $= -\frac{1}{2}x + \frac{5}{2}$.
 P_{1} remetric equation of T_{1} is
 $x = -t$
 MMM^{2}
 $y = \frac{1}{2}t + \frac{5}{2}$.
 $The complex parametrization of T_{1} is
 $T_{1}(t) = x + it = -t + i\left(\frac{1}{2}t + \frac{5}{2}\right)$.
 $where -3 \le t \le -1$.
 W_{1} have
 $T_{1}(t) = -1 + i\left(\frac{1}{2}t + \frac{5}{2}\right) = -i + 3i$
 $\int_{T_{1}}^{T} dv = \int_{-3}^{T} f(t) T_{1}(t) dt = \int_{-5}^{T} [-t + i\left(\frac{1}{2}t + \frac{5}{2}\right)](-1 + ic) dt$
 $f(x) = t$
 $f(x) = t$$

(b)
$$V_{L}$$
 Crussts of two parts :
 $V_{3}(t) = 3-t+i$ $0 \le t \le 2$
 $V_{4}(t) = 1+ct$ $1 \le t \le 2$.
 $V_{4}(t) = 1+ct$ $1 \le t \le 2$.
 $V_{4}(t) = 1+ct$ $1 \le t \le 2$.
 $V_{3}(t) = -1$
 $T_{3}(t) = -1$
 $T_{4}(t) = i$
 $\int_{V_{2}} 2 dt = \int_{V_{3}} 2 dt + \int_{V_{4}} 2 dt$
 $= \int_{0}^{2} T_{3}(t) T_{3}(t) dt + \int_{1}^{2} T_{4}(t) T_{4}(t) dt$
 $= \int_{0}^{2} (3-t+c)(-1) dt + \int_{1}^{2} (1+it) c dt$

(c) $\int_{\gamma_1} \bar{z} dz$

(d) $\int_{\gamma_2} \bar{z} dz$