With $z_{1}=3+i, z_{2}=1+i, z_{3}=1+2 i$, let γ_{1} be the line segment from z_{1} to z_{3}, and γ_{2} be the path consisting of the line segment from z_{1} to z_{2} and the line segment from z_{2} to z_{3}. Find the following integrals:
(a) $\int_{\gamma_{1}} z d z$

r_{1} is a line segment that passes through two points i_{1} and zs. Thus,

$$
\begin{aligned}
y=\frac{y_{3}-y_{1}}{x_{3}-x_{1}}\left(x-x_{1}\right)+y_{1} & =\frac{2-1}{1-3}(x-3)+1 \\
& =-\frac{1}{2} x+\frac{5}{2} .
\end{aligned}
$$

Parametric equation of γ_{1} is

$$
\begin{aligned}
& x=-t \\
& y=\frac{1}{2} t+\frac{5}{2} .
\end{aligned}
$$

The complex parametrization of x_{1} is

$$
r_{1}(t)=x+i t=-t+i\left(\frac{1}{2} t+\frac{5}{2}\right) \text {. }
$$

where $-3 \leq t \leq-1$.
we have

$$
\begin{aligned}
& \gamma_{1}^{\prime}(t)=-1+i\left(\frac{1}{2}+\frac{5}{2}\right)=-1+3 i \\
& \int_{\gamma_{1}} t d t=\int_{-3}^{-1} \gamma_{i}(t) \gamma_{1}^{\prime}(t) d t=\int_{-0}^{-1}\left[-t+i\left(\frac{1}{2} t+\frac{5}{2}\right)\right](-1+3 i) d t \\
& f(r)=t \quad f\left(r_{1}(H)\right)=\ldots \text { (multiply, then split the } \\
& \text { integral to too parts: real } \\
& \text { and imaginary.)' }
\end{aligned}
$$

(b) γ_{2} Consists of two parts:

$$
\begin{array}{ll}
\gamma_{3}(t)=3-t+i & 0 \leq t \leq 2 \\
\gamma_{4}(t)=1+c t & 1 \leq t \leq 2 .
\end{array}
$$

$$
\begin{aligned}
& r_{2}=1+i \quad \gamma_{\gamma_{3}}^{z_{3}}=z_{i}=3+i \\
& \gamma_{3}^{\prime}(t)=-1 \\
& r_{4}^{\prime}(t)=i \\
& \int_{\gamma_{2}} z d z=\int_{\gamma_{3}} z d r+\int_{\gamma_{4}} z d z \\
& =\int_{0}^{2} r_{3}(t) r_{3}^{\prime}(t) d t+\int_{1}^{2} r_{4}(t) r_{4}^{\prime}(t) d t \\
& =\int_{0}^{2}(3-t+i)(-1) d t+\int_{1}^{2}(1+i t) c d t \\
& =\ldots .
\end{aligned}
$$

(c) $\int_{\gamma_{1}} \bar{z} d z$
(d) $\int_{\gamma_{2}} \bar{z} d z$

