Evaluate the following complex integrals:
(a) $\int_{\gamma_{1}} \frac{1}{z} d z$ where γ_{1} is the right half of the unit circle centered at the origin, starting at i and ending at $-i$.

There are two methods to solve this problem.
Method 1: use parametrization of γ_{1}

$$
\begin{aligned}
\gamma_{1}(t) & =e^{-i t} \quad \text { where }-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \\
\gamma_{1}^{\prime}(t) & =(-i) e^{-i t} \\
\int_{\gamma_{l}} \frac{1}{z} d z & =\int_{-\pi / 2}^{\pi / 2} \frac{1}{e^{-i t}}(-i) e^{-i t} d t=\int_{-\pi / 2}^{\pi / 2}(-i) d t=-i \pi .
\end{aligned}
$$

Method 2: use Fundamental theorem of Calculus.
(Ser page 3)
(b) $\int_{\gamma_{2}} \frac{1}{z} d z$ where γ_{2} is the left half of the unit circle centered at the origin, starting at i and ending at $-i$.

Method 1: use parametrization of γ_{2}

$$
\begin{aligned}
\gamma_{2}(t) & =e^{i t} \quad \text { where } \quad \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2} \\
\gamma_{2}^{\prime}(t) & =c e^{i t} \\
\int_{\gamma_{2}} \frac{1}{z} l z & =\int_{\pi / 2}^{3 \pi / 2} \frac{1}{e^{i t}} i e^{i t} d t=\int_{\pi / 2}^{3 \pi / 2} i d t=i \pi .
\end{aligned}
$$

Method 2: use Fundamental theorem of Calculus.
(See page 3)
(c) $\int_{\gamma} \frac{z}{z^{2}+1} d z$
where γ is the straight line segment from to origin to $1+i$.
Put $n=z^{2}+1$.
Then $d u=2 z d z$

$$
\int_{\gamma} \frac{z}{z^{2}+1} d z=\int_{\eta} \frac{1}{2} \frac{1}{u} d u
$$

where η is the image of the curve γ under the map $z^{2}+1$.
In other words,

$$
\begin{aligned}
\eta(t)=\gamma(t)^{2}+1=(t+i t)^{2}+1 & =t^{2}+2\left(t^{2}-t^{2}+1\right. \\
& =1+2 t^{2} i
\end{aligned}
$$

$$
\gamma(t)=x(t)+i y(t)
$$

$$
=t+i t
$$

where $0 \leq t \leq 1$
we see that η is a line segment on the line $x=1$.

The function $f(u)=\frac{1}{2} \frac{1}{u}$ has an antiderisative $F(n)=\frac{1}{2} \log (u)$ in the region $G=\mathbb{C} \backslash \mathbb{R} \leq 0$.
Because η lies entirely in G, we can use Fund. Tho. of Calc.

$$
\begin{aligned}
\int_{\gamma} \frac{z}{z^{2}+1} d z=\int_{\eta} \frac{1}{2} \frac{1}{u} d u=F(\eta(1))-F(\eta(0)) & =\frac{1}{2} \log (1+2 c) \\
& =\ldots
\end{aligned}
$$

(a) Method 2: use Fundamental The of Calculus.

$f(z)=\frac{1}{z}$ has antiderivative $F(z)=\log z$ on the region $G=\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
We see that γ, lies entirely in G.
By Fund Thu. of Calc., we have

$$
\begin{aligned}
\int_{\Upsilon_{1}} f(x) d \sigma=F(-i)-F(i) & =\log (-i)-\log (i) \\
& =-i \pi .
\end{aligned}
$$

(b) Method 2: use Fundamental The of Calculus.

$f(z)=\frac{1}{z}$ has antiderivative $\widetilde{F}(z)=\log (-z)$ on the region $G=\mathbb{C} \backslash \mathbb{R}_{\geq 0}$.
We see that γ_{2} lies entirely in G.
By Fund The. of Calc., we have

$$
\begin{aligned}
\int_{\gamma_{2}} f(i) d \tau=\tilde{F}(-i)-\widetilde{F}(i) & =\log (i)-\log (-i) \\
& =i \pi .
\end{aligned}
$$

