Evaluate the following complex integrals:
(a) $\int_{\gamma} z^{i} d z$ where γ is the left half of the unit circle centered at the origin, starting at i and ending at $-i$.
 $f(z)=z^{i}$ has antiderivative $F(z)=\frac{z^{i+1}}{i+1}=\frac{e^{(i+1) \log z}}{i+1}$
on the region $G=\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
Denote by γ_{1} and γ_{2} the curves:
See Lecture 25

$$
\begin{array}{ll}
\gamma_{l}(t)=e^{i t}, & \frac{\pi}{2} \leq t \leq \pi-\varepsilon \\
\gamma_{2}(t)=e^{i t}, & \bar{\sigma}+\varepsilon \leq t \leq \pi .
\end{array}
$$

Note that r_{1} and r_{2} lie entirely in $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$.
We can use the fundamental theorem of calculus. (continue on next page)
(b) $\int_{\gamma} e^{z} d z$ where γ is the part of the curve $y=\sin x$ from $x=0$ to $x=3 \pi$.
(See Lecture 24.)
(c) $\int_{\gamma} \frac{1}{z^{2}+1} d z$
where γ is the circle centered at the origin with radius 2 oriented counterclockwise. S will be discussed when we learn Cauchy's Integral formula.

* Continue Part (a):

$$
\begin{aligned}
\int_{\gamma_{1}} z^{i} d z=F(B)-F(A) & =F\left(e^{i(\pi-\varepsilon)}\right)-F(i) \\
& =\frac{\left(e^{i(\pi-\varepsilon))^{i+1}}\right.}{i+1}-\frac{i^{i+1}}{i+1} \\
& =\frac{e^{(i+1) \log \left(e^{i(\pi-\varepsilon)}\right)}}{i+1}-\frac{e^{(i+1) \log i}}{i+1} \\
& =\frac{e^{(i+1) i(\pi-\varepsilon)}}{i+1}-\frac{e^{(i+1) i \frac{\pi}{2}}}{i+1} \\
\int_{\gamma_{2}}^{z^{i} d z=}=F(D) & -F(A)=F(-\varepsilon)-F\left(e^{i(\pi+\varepsilon)}\right) \\
& =\frac{e^{(i+1)(\pi)}}{i+1}-\frac{e^{(i+1)\left(\frac{\pi}{2}\right.}}{i+1}=\cdots \\
& =\frac{e^{i+1}}{i+1}-\frac{\left(e^{i(\pi+\varepsilon))^{i+1}}\right.}{i+1} \\
& =\frac{e^{i+1) \log (-i)\left(e^{i(\pi+\varepsilon)}\right)}}{i+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{(i+1) i\left(-\frac{\pi}{2}\right)}}{i+1}-\frac{e^{(i+1) i(-\pi+\varepsilon)}}{i+1} \\
& \xrightarrow{\varepsilon-20}-\cdots-\frac{e^{(i+1) i(-\pi)}}{i+1}
\end{aligned}
$$

In conclusion,

$$
\int_{\sigma}^{\prime} z^{i} d r=\lim _{\varepsilon \rightarrow 0}\left(\int_{\gamma_{1}}+\int_{\gamma_{2}}\right)=\cdots \cdot
$$

