Worksheet
5/8/2020

1. Find the region where function $f(z)=1 / z$ is holomorphic using the methods:
(a) Definition of derivative $f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}$

$$
\begin{aligned}
& \quad \frac{f(z+h)-f(z)}{h}=\frac{\frac{1}{z+h}-\frac{1}{z}}{h}=\frac{\frac{-h}{(z+h) z}}{h}=-\frac{1}{(z+h) z} \\
& \lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=-\frac{1}{z^{2}}
\end{aligned}
$$

Therefore, f is differentiable at every $z \in \mathbb{C} \backslash\{0\}$.

$$
f \text { is holomorphic on } \mathbb{C} \backslash\{0\} \text {. }
$$

$$
f^{\prime}(z)=-\frac{1}{z^{2}}
$$

(b) Differentiation rules: addition, multiplication, composition, etc.

Apply the quotient rule:

$$
f^{\prime}(z)=\left(\frac{1}{z}\right)^{\prime}=\frac{1^{\prime} z-1 z^{\prime}}{z^{2}}=\frac{-1}{z^{2}} \text { for and } z \neq 0 \text {. }
$$

(c) Cauchy-Riemann equations.
wite $z=x+i y$.

$$
f(z)=\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=\underbrace{\frac{x}{x^{2}+y^{2}}}_{u(x, y)}+i \underbrace{\frac{-y}{x^{2}+y^{2}}}_{v(x, y)}
$$

We have

$$
\begin{aligned}
& u_{2}=\frac{1\left(x^{2}+y^{2}\right)-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& v_{y}=\frac{(-1)\left(x^{2}+y^{2}\right)-(-y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& u_{y}=\frac{-x(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& v_{x}=\frac{-(-y)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

We see that

$$
\left\{\begin{array}{l}
u_{x}=v_{y} \\
u_{y}=-v_{2}
\end{array} \quad \text { for any }(x, y) \neq(0,0)\right. \text {. }
$$

Therefore, f is differentiable everywhere in $\mathbb{C} \backslash\{0\}$.
f is holomorphic on $\mathbb{C} \backslash\{0\}$.

$$
f^{\prime}(z)=4 x+i v_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+i \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

(which is equal to $\frac{-1}{(x+i y)^{2}}=\frac{-1}{z^{2}}$)

