Name:
Instructions: Show your work. Circle your final answers. The assignment has 6 pages.

1. Find the following integrals:
(a)

$$
\int \frac{1}{1-x^{2}} d x
$$

Hint: use partial fraction decomposition.

$$
\text { Int } \quad \frac{1}{1-x^{2}}=\frac{1}{(1-x)(1+x)}=\frac{A}{1-x}+\frac{B}{1+x}
$$

Require: $\quad 1=A(1+x)+B(1-x)$

$$
\begin{aligned}
& 2 \text { pt }\left\{\begin{array}{l}
\text { Plug } x=1: \quad A=\frac{1}{2} \\
\text { Plug } x=-1: \quad B=\frac{1}{2}
\end{array}\right. \\
& 2 \text { pt }\left\{\int \frac{1}{1-x^{2}} d x=\frac{1}{2} \int \frac{1}{1-x} d x+\frac{1}{2} \int \frac{1}{1+x} d x=-\frac{1}{2} \ln |1-x|+\frac{1}{2} \ln |1+x|+C\right.
\end{aligned}
$$

(b)

$$
\int \frac{1}{\cos x} d x
$$

Hint: use substitution $u=\sin x$.

$$
\begin{aligned}
& 2 p^{t}\left\{\int \frac{\cos x}{\cos ^{2} x} d x=\int \frac{d u}{1-u^{2}}=-\frac{1}{2} \ln |1-u|+\frac{1}{2} \ln |1+u|+C\right. \\
& \text { from Past a) } \\
& 2 p t\left\{=-\frac{1}{2} \ln (1-\sin x)+\frac{1}{2} \ln (1+\sin x)+C\right.
\end{aligned}
$$

(c)

$$
\int \sqrt{1+x^{2}} d x
$$

Hint: use substitution $x=\tan u$.

$$
\begin{aligned}
& \text { upi }\left\{\quad d x=x^{1} d u=\left(1+\tan ^{2} u\right) d u=\left(1+x^{2}\right) d u\right. \\
& \sqrt{1+x^{2}} d x=\sqrt{1+x^{2}}\left(1+x^{2}\right) d u=\left(1+x^{2}\right)^{3 / 2} d u=\left(1+\tan ^{2} u\right)^{3 / 2} d u \\
& =\frac{1}{\left(\cos ^{2} u\right)^{3 / v}} d u \\
& 2 p t\left\{=\frac{1}{\cos ^{3} u} d u\right. \\
& \text { opt }\left\{\begin{array}{ll}
\int \sqrt{1+x^{2}} d x=\int \frac{1}{\cos ^{3} u} d u & =\underbrace{\int \frac{\cos u}{\cos ^{4} u} d u}_{\text {Then } \cos ^{4} u=\left(\cos ^{2} u\right)^{2}} \\
\text { Put } v=\sin u .
\end{array} \quad=\int \frac{d v}{\left(1-v^{2}\right)^{2}}=\int \frac{d v}{(1-v)^{2}(1+v)^{2}}\right. \\
& \text { (d) } \\
& =\left(1-b^{2}\right)^{2} \\
& \int_{0}^{\pi / 2} x \cos 2 x d x \quad=\int\left(\frac{A}{1-v}+\frac{B}{(1-v)^{2}}+\frac{C}{1+v}\right. \\
& \text { Hint: use integration by parts. } \\
& 2 p t \begin{cases}u=x \ldots d u & =d x \\
d v & =\cos 2 x d x \ldots \\
d & v=\frac{1}{2} \sin 2 x\end{cases} \\
& 2 p t \\
& =\left.\frac{1}{2} \cdot \frac{1}{2} \cos 2 x\right|_{0} ^{\pi / 2} \\
& =\frac{1}{4}(\cos \pi-\cos 0) \\
& =-\frac{1}{2} \\
& \text { (Sorry I didn't leave } \\
& \text { enough space) }
\end{aligned}
$$

(e)

$$
\int_{0}^{3} \frac{x}{\sqrt{x+1}} d x
$$

Hint: use either substitution or integration by parts.
$2 p t\{\quad u=x+1 \ldots \cdot \cdot d u=d x$

x	0	3
a	1	4

$$
2 p t\left\{\begin{aligned}
& \int_{1}^{4} \frac{u-1}{\sqrt{u}} d u=\int_{1}^{4}\left(\sqrt{u}-\frac{1}{\sqrt{u}}\right) d u=\left.\left(\frac{2}{3} u^{3 / 2}-2 \sqrt{u}\right)\right|_{1} ^{4} \\
&=\frac{2}{3}(4)^{3 / 2}-2 \sqrt{4}-\left(\frac{2}{3}-2\right) \\
&=\frac{8}{3}
\end{aligned}\right.
$$

(f)

$$
\int e^{x} \cos ^{2} x d x
$$

Hint: use the identity $\cos 2 x=2 \cos ^{2} x-1$.
2pt $\left\{\quad \cos ^{2} x=\frac{1}{2}(\cos 2 x+1)=\frac{1}{2} \cos 2 x+\frac{1}{2}\right.$
Int $^{2}\{\int e^{x} \cos ^{2} x d x \int e^{x}\left(\frac{1}{2} \cos 2 x+\frac{1}{2}\right) d x=\frac{1}{2} \underbrace{\int e^{x} \cos 2 x d x}_{I}+\frac{1}{2} \underbrace{\int e^{x} d x}_{e^{x}+C}$
$2_{p t}\left\{\begin{aligned} & \text { To compute } I, \text { use integration by } p \\ & u=e^{x} \ldots . d u \\ & d v=e^{x} d x \\ & d v=\cos 2 x d x \ldots \\ & v=\frac{1}{2} \sin 2 x\end{aligned}\right.$

$$
I=\frac{1}{2} e^{x} \sin 2 x-\frac{1}{2} \underbrace{\int e^{x} \sin 2 x d x}_{J}
$$

2pt $\left\{\begin{array}{l}u=e^{x} \ldots d \cdot d u=e^{x} d x \\ d v=\sin 2 x d x \ldots v=-\frac{1}{2} \cos 2 x\end{array}\right.$

$$
\Gamma \quad I=\frac{1}{2} e^{2} \sin 2 x-\frac{1}{2}\left(-\frac{1}{2} e^{x} \cos 2 x+\frac{1}{2} I\right)
$$

$\operatorname{upt}\left\{J=-\frac{1}{2} e^{x} \cos 2 x+\frac{1}{2} \int e^{x} \cos 2 x d x=-\frac{1}{2} e^{x} \cos 2 x+\frac{1}{2} I\right.$

$$
=\begin{array}{r}
\frac{1}{2} e^{x} \sin 2 x+\frac{1}{4} e^{x} \cos 2 x \\
-\frac{1}{4} I
\end{array}
$$

$$
I=\frac{4}{5}\left(\frac{1}{2} e^{x} \sin 2 x+\frac{1}{4} e^{x} \cos 2 x\right)
$$

(g)

$$
I=\int_{0}^{\pi} e^{x} \cos 2 x d x
$$

Hint: use integration by parts twice.

$$
\begin{align*}
& u=e^{x} \cdots \cdot d u=e^{x} d x \\
& \text { Ip } \begin{cases}u=e \\
v & =\cos 2 x \ldots . . \\
v & =\frac{1}{2} \sin 2 x\end{cases} \\
& z_{p} t\{I=\underbrace{\left.\frac{1}{2} e^{x} \sin 2 x\right|_{0} ^{\pi}}_{=0}-\frac{1}{2} \underbrace{\int_{0}^{\pi} e^{x} \sin 2 x d x}_{J}=-\frac{1}{2} J \tag{*}\\
& \text { opt }\left\{\begin{array}{rl}
u & =e^{x} \ldots \ldots d u
\end{array}=e^{x} d x\right. \\
& \operatorname{Lpt}\left\{\begin{array}{l}
J=\frac{-\left.\frac{1}{2} e^{x} \cos 2 x\right|_{0} ^{\pi}}{J}+\frac{1}{2} \int_{0}^{\pi} e^{x} \cos 2 x d x=-\frac{1}{2} e^{\pi}+\frac{1}{2}+\frac{1}{2} I \\
-\frac{1}{2} e^{\pi} \cos 2 \pi+\frac{1}{2} e^{0} \cos 0 \\
=-\frac{1}{2} e^{\pi+\frac{1}{2}}
\end{array}\right.
\end{align*}
$$

Substitute this J into $(*)$:

$$
I=-\frac{1}{2}\left(-\frac{1}{2} e^{\pi}+\frac{1}{2}+\frac{1}{2} I\right)=-\frac{1}{2}\left(-\frac{1}{2} e^{\pi}+\frac{1}{2}\right)-\frac{1}{4} I
$$

apt

$$
I=-\frac{4}{5} \frac{1}{2} \frac{1}{2}\left(-e^{\pi}+1\right)=\frac{e^{\pi}-1}{5}
$$

(h)

$$
\int \frac{x^{4}}{x^{3}-2 x^{2}+x} d x
$$

Hint: first do long division, then use partial fraction decomposition.

$$
\int \frac{3 x-2}{(x-1)^{2}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}
$$

Opt $\left\{\begin{array}{l}\text { want: } 3 x-2=A(x-1)+B \\ \text { Thus, } A=3, B=1\end{array}\right.$

$$
\begin{aligned}
\int \frac{x^{4}}{x^{3}-2 x^{2}+x} d x & =\int\left(x+2+\frac{3}{x-1}+\frac{1}{(x-1)^{2}}\right) d x \\
& =\frac{x^{2}}{2}+2 x+3 \ln |x-1|+\int \frac{1}{(x-1)^{2}} d x
\end{aligned}
$$

pt

$$
\left\{\begin{array}{c}
\text { Put } u=x-1 \ldots d u=d x \\
11
\end{array} 1 x=1 \frac{1}{1} d u\right.
$$

$$
\int \frac{1}{(x-1)^{2}} d x=\int \frac{1}{u^{2}} d u=-u^{-1}+C=\frac{-1}{x-1}+C
$$

Conclusion:

$$
\frac{x^{2}}{2}+2 x+3 \ln |x-1|-\frac{1}{x-1}+C
$$

$$
\begin{aligned}
& \operatorname{Ln}_{p} t \begin{cases}x^{3}-2 x^{2}+x \sqrt{x^{4}} \\
-\frac{x^{4}-2 x^{3}+x^{2}}{} \\
& \frac{2 x^{3}-x^{2}}{2 x^{3}-4 x^{2}+2 x} \\
3 x^{2}-2 x\end{cases} \\
& \frac{x^{4}}{x^{3}-2 x^{2}+x}=x+2+\frac{3 x^{2}-2 x}{x^{3}-2 x^{2}+x}=x+2+\frac{3 x-2}{x^{2}-2 x+1} \\
& \text { opt }\left\{=x+2+\frac{3 x-2}{(x-1)^{2}}\right.
\end{aligned}
$$

2. Compute the volume of the unit sphere (ie. sphere with radius 1). Hint: the sphere is a solid of revolution. You can use either the slicing method or shell method.

First, let's compute the volume of the upper hemisphere:

$$
\text { vol }=\int_{0}^{1} 2 \pi x \sqrt{1-x^{2}} d x \quad \text { (shell method) }
$$

$$
\begin{array}{rlrl}
u & =1-x^{2} & \frac{x}{4} & 0 \\
u & 1 & 0 \\
d u & =-2 x d x & 1 & 0 \\
\int_{0}^{1} 2 \pi x \sqrt{1-x^{2}} d x & =\int_{1}^{0} 2 \pi \sqrt{u}\left(-\frac{1}{2}\right) d u=\int_{0}^{1} \pi \sqrt{u} d u \\
& =\left.\frac{2}{3} \pi u^{3 / 2}\right|_{0} ^{1}=\frac{2 \pi}{3}
\end{array}
$$

The volume of the entire sphere is

$$
2\left(\frac{2 \pi}{3}\right)=\frac{4 \pi}{3}
$$

