Group work 6
Due 3/13/2019

Name:
Instructions: Show your work. Circle your final answers. The assignment has 8 pages.

1. Find the following indefinite integral:

$$
\int \frac{\ln x}{x^{2}} d x
$$

Hint: use integration by parts.

$$
\begin{aligned}
& u=\ln x \ldots d u=\frac{1}{x} d x \\
& d v=\frac{d x}{x^{2}} \ldots \ldots=-\frac{1}{x}
\end{aligned}
$$

$$
\int u d v=-\frac{1}{x} \ln x-\int-\frac{1}{x} \cdot \frac{1}{x} d x=-\frac{1}{x} \ln x+\int \frac{1}{x^{2}} d x
$$

$$
=-\frac{1}{x} \ln x-\frac{1}{x}+c
$$

2. Evaluate the improper integral

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln x}{x^{2}} d x
$$

$$
\int_{1}^{b} \frac{\ln x}{x^{2}} d x=\left.\left(-\frac{1}{x} \ln x-\frac{1}{x}\right)\right|_{1} ^{b}=-\frac{\ln b}{b}-\frac{1}{b}-\left(-\frac{1}{1} \ln 1-\frac{1}{1}\right)
$$

$$
=\underbrace{-\frac{\ln b}{b}}-\underbrace{-\frac{1}{b}}+1 \quad \rightarrow(1
$$

3. To evaluate the integral

$$
\int \frac{2 x^{3}+x^{2}-6 x+7}{x^{2}+x-6} d x
$$

one follows the below steps.
(a) Do long division.

4

$$
\begin{array}{r}
x^{2}+x-6 \begin{array}{r}
2 x-1 \\
\frac{-2 x^{3}+x^{2}-6 x+7}{2 x^{2}-12 x} \\
-\frac{-x^{2}+6 x+7}{7 x+1}
\end{array}
\end{array}
$$

$$
\frac{2 x^{3}+x^{2}-6 x+7}{x^{2}+x-6}=2 x-1+\frac{7 x+1}{x^{2}+x-6}
$$

(b) Do partial fraction decomposition for the fraction of remainder/divisor.

$$
\frac{7 x+1}{x^{2}+x-6}=\frac{7 x+1}{(x-2)(x+3)}=\frac{A}{x-2}+\frac{B}{x+3}
$$

Lit what: $7 x+1=A(x+3)+B(x-2)$

$$
\begin{aligned}
\text { Plug } x=-3: \quad-20 & =-5 B \\
\text { Plug } x=2: B=4 & \rightarrow 5 A \\
\frac{7 x+1}{x^{2}+x-6} & =\frac{3}{x-2}+\frac{4}{x+3}
\end{aligned}
$$

(c) Find the given integral by finding the integral of each term.

$$
\int \ldots=\int\left(2 x-1+\frac{3}{x-2}+\frac{4}{x+3}\right) d x
$$

$4 p t$

$$
=x^{2}-x+3 \ln |x-2|+4 \ln |x+3|+C
$$

4. To compute the volume of the solid obtained by rotating the region bounded by the curves $y=\sqrt{x}$ and $y=\frac{x}{2}$ about the x-axis, one follows the below steps:
(a) Graph these two curves on the same graph. Then shade the region bounded by them.

(b) Find the points of intersection between these curves.

(c) Let S be the solid obtained by rotating the shaded region about the x-axis. First, specify which method you want to use to compute the volume of S (slice method or shell method). Then write the definite integral expressing the volume of S. Don't evaluate yet.
Say, use shell method:

(d) Evaluate the integral you have found above.

$$
\begin{aligned}
& =2 \pi \int_{0}^{2}\left(2 y^{2}-y^{3}\right) d y \\
& =\left.2 \pi\left(\frac{2}{3} y^{3}-\frac{y^{4}}{4}\right)\right|_{0} ^{2} \\
& =2 \pi\left(\frac{16}{3}-\frac{16}{4}\right)=\frac{8 \pi}{3}
\end{aligned}
$$

5. To compute the volume of the solid obtained by rotating the region bounded by the curves $y=2 x-4$ and $y=x^{2}-3 x$ about the y-axis, one follows the below steps:
(a) Graph these two curves on the same graph. Then shade the region bounded by them.

(b) Find the points of intersection between these curves.

$$
3 x^{x}
$$

$$
\begin{aligned}
& x^{2}-3 x=2 x-4 \longrightarrow x^{2}-5 x+4=0 \leadsto x=1 \text { os } x=4 \\
& \text { For } x=1: y=-2 \\
& \text { For } x=4: y=4 \\
& (1,-2) \text { and }(4,4)
\end{aligned}
$$

(c) Let S be the solid obtained by rotating the shaded region about the y-axis. First, specify which method you want to use to compute the volume of S (slice method or shell method). Then write the definite integral expressing the volume of S. Don't evaluate yet.

Say, use shell method.

$$
\int_{1}^{4} 2 \pi x\left(2 x-4-\left(x^{2}-3 x\right)\right) d x
$$

(d) Evaluate the integral you have found above.

$$
3 \pi
$$

$$
\begin{aligned}
& \int_{1}^{4} 2 \pi x\left(-x^{2}+5 x-4\right) d x \\
= & 2 \pi \int_{1}^{4}\left(-x^{3}+5 x^{2}-4 x\right) d x \\
= & \left.2 \pi\left(-\frac{x^{4}}{4}+\frac{5}{3} x^{3}-2 x^{2}\right)\right|_{1} ^{4}=\frac{45 \pi}{2}
\end{aligned}
$$

6. To find the area of the surface generated when the curve $y=\sqrt{5 x-x^{2}}$ on $[1,4]$ is revolved about the x-axis, one follows the below steps:
(a) Sketch the graph of the given curve.

$3 p t$
(b) Express the surface integral as a definite integral. Don't evaluate yet.

$$
\int_{1}^{4} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

where $f(x)=\sqrt{5 x-x^{2}}$
(c) Evaluate the integral you have found above.

$$
\begin{aligned}
& f^{f^{\prime}(x)=} \begin{aligned}
& 1+f^{\prime}(x)^{2}=1+\frac{5-2 x}{2 \sqrt{5 x-x^{2}}} \\
&=\frac{20 x-4 x^{2}+(25-20 x)^{2}}{4\left(5 x-x^{2}\right)}
\end{aligned}=\frac{4\left(5 x-x^{2}\right)+(5-2 x)^{2}}{4\left(5 x-x^{2}\right)} \\
& \\
& =\frac{25\left(5 x-x^{2}\right)}{4\left(5 x-x^{2}\right)} \\
& 2 \pi f(2) \sqrt{1+f^{\prime}(x)^{2}}=2 \pi \sqrt{5 x-x^{2}} \frac{5}{2 \sqrt{5 x-x^{2}}}=5 \pi \\
& \\
& \int_{1}^{4} \cdots \cdot d x=\int_{1}^{4} 5 \pi d x
\end{aligned}
$$

