Homework 2

1. Consider two following sums:

$$
S_{n}=\sum_{k=0}^{n-1} \frac{k}{n^{2}}, \quad S_{n}^{\prime}=\sum_{k=1}^{n} \frac{k+2}{n^{2}}
$$

Given that $\lim _{n \rightarrow \infty} S_{n}=\frac{1}{2}$, find $\lim _{n \rightarrow \infty} S_{n}^{\prime}$.
(Hint: compute the difference $S_{n}^{\prime}-S_{n}$.)
2. (Similar to Problems 21-24 of Section 5.2, page 359)

Each of the following sums is an approximation of the area of some region. Given that this is a region between graph of a function and the x-axis. Determine the corresponding function f and the interval. Use Mathematica to sketch the region.
(a)

$$
\sum_{k=1}^{n}\left(1+\frac{k^{2}}{n^{2}}\right) \frac{1}{n}
$$

(b)

$$
\sum_{k=1}^{n}\left(1+\frac{k+1}{n}\right) \frac{2}{n}
$$

(c)

$$
\sum_{k=1}^{n} \ln \left(1+\frac{k+\frac{2}{3}}{n}\right) \frac{1}{n}
$$

3. Practice finding antiderivatives: answer the first 10 homework questions (out of 21) of Section 4.9 on MyMathLab.
4. Practice using geometry to compute definite integrals: do Problems 25, 27, 29 of Section 5.2, page 359. Use Mathematica to sketch the graph of the integrands.
