Some review problems for Midterm

1. Find the following indefinite integrals:
(a) $\int \frac{2}{9+x^{2}} d x$
(c)

$$
\int \frac{e^{1 / x^{2}}}{x^{3}} d x
$$

(b)

$$
\int \cos 2 x \sin 3 x d x
$$

(d)

$$
\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x
$$

2. Find the following definite integrals:
(a)

$$
\int_{0}^{1} \frac{3}{\sqrt{9-4 x^{2}}} d x
$$

(b)

$$
\int_{0}^{\pi} \sin ^{2} 3 x d x
$$

(c)

$$
\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{2} x d x
$$

(d)

$$
\int_{0}^{9} 4 \sqrt[3]{1-x} d x
$$

3. Do the following:
(a) Find the intercepts of the curves $y=9-x^{2}$ and $y=8 x$ in the first quadrant.
(b) Find the intercepts of the curves $y=9-x^{2}$ and $y=5 x / 2$ in the first quadrant.
(c) Find the area of the region bounded by the curves $y=9-x^{2}, y=5 x / 2, y=8 x$ in the first quadrant.
4. Find the length of the curve

$$
y=\frac{x^{3 / 2}}{3}-x^{1 / 2} \quad \text { on }[4,16]
$$

5. A roller coaster is running. Its height from the ground is measured as a function of time:

$$
h(t)=t(\pi-t)+\frac{1}{2} \sin (6 t)
$$

Compute the average height of the roller coaster from the ground during the time period $t \in[0, \pi]$. (Of course $h(t) \geq 0$ for all $t \in[0, \pi]$ for practical reason.)

6 . For each integer $n \geq 1$, consider the sum

$$
S_{n}=\sum_{k=0}^{n-1}\left(\frac{k^{2}}{n^{2}}+\frac{k}{n}+1\right) \frac{3}{n} .
$$

Suppose we want to realize S_{n} as a Riemann sum of some function. That is to write S_{n} in the form

$$
S_{n}=\sum_{k=0}^{n-1} f\left(x_{k}^{*}\right)\left(x_{k+1}-x_{k}\right)
$$

Follow the below steps:
(a) From the given formula of S_{n}, choose the width of each subinterval. (Answer is not unique.)
(b) With this choice of width, what is the height $f\left(x_{k}^{*}\right)$?
(c) Choose the initial point x_{0}. (Answer is not unique.)
(d) With x_{0} and the subinterval width, compute the grid-points x_{k} in terms of k and n.
(e) What is the interval $[a, b]$?
(f) In the formula of S_{n}, the index k runs from 0 to $n-1$. This implies that the subintervals are labeled from 0 to $n-1$. What are the endpoints of the 0th, 1st, 2nd intervals? What are the endpoints of the k 'th interval?
(g) Recall from the lecture that x_{k}^{*} denotes a sample point on the k^{\prime} th subinterval. What is your choice for x_{k}^{*} ? Is it a left point, right point, midpoint or neither of these?
(h) What is the function f ?
7. With S_{n} given in the previous problem, compute $\lim _{n \rightarrow \infty} S_{n}$ using definite integral.

