1. Find the following indefinite integrals:

(a)
$$\int \frac{2}{9+x^2} dx$$
 (c)
$$\int \frac{e^{1/x^2}}{x^3} dx$$

(b) (d)
$$\int \cos 2x \sin 3x dx$$

$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$$

2. Find the following definite integrals:

(a)
$$\int_{0}^{1} \frac{3}{\sqrt{9-4x^{2}}} dx$$
 (c) $\int_{0}^{\pi/2} \sin^{3}x \cos^{2}x dx$
(b) (d) $\int_{0}^{\pi} \sin^{2}3x dx$ $\int_{0}^{9} 4\sqrt[3]{1-x} dx$

- 3. Do the following:
 - (a) Find the intercepts of the curves $y = 9 x^2$ and y = 8x in the first quadrant.
 - (b) Find the intercepts of the curves $y = 9 x^2$ and y = 5x/2 in the first quadrant.
 - (c) Find the area of the region bounded by the curves $y = 9 x^2$, y = 5x/2, y = 8x in the first quadrant.
- 4. Find the length of the curve

$$y = \frac{x^{3/2}}{3} - x^{1/2}$$
 on [4, 16]

5. A roller coaster is running. Its height from the ground is measured as a function of time:

$$h(t) = t(\pi - t) + \frac{1}{2}\sin(6t)$$

Compute the average height of the roller coaster from the ground during the time period $t \in [0, \pi]$. (Of course $h(t) \ge 0$ for all $t \in [0, \pi]$ for practical reason.)

6. For each integer $n \ge 1$, consider the sum

$$S_n = \sum_{k=0}^{n-1} \left(\frac{k^2}{n^2} + \frac{k}{n} + 1\right) \frac{3}{n}.$$

Suppose we want to realize S_n as a Riemann sum of some function. That is to write S_n in the form

$$S_n = \sum_{k=0}^{n-1} f(x_k^*)(x_{k+1} - x_k).$$

Follow the below steps:

- (a) From the given formula of S_n , choose the width of each subinterval. (Answer is not unique.)
- (b) With this choice of width, what is the height $f(x_k^*)$?
- (c) Choose the initial point x_0 . (Answer is not unique.)
- (d) With x_0 and the subinterval width, compute the grid-points x_k in terms of k and n.
- (e) What is the interval [a, b]?
- (f) In the formula of S_n , the index k runs from 0 to n-1. This implies that the subintervals are labeled from 0 to n-1. What are the endpoints of the 0th, 1st, 2nd intervals? What are the endpoints of the k'th interval?
- (g) Recall from the lecture that x_k^* denotes a sample point on the k'th subinterval. What is your choice for x_k^* ? Is it a left point, right point, midpoint or neither of these?
- (h) What is the function f?
- 7. With S_n given in the previous problem, compute $\lim_{n\to\infty} S_n$ using definite integral.