MATH 252H, SECTION 1, MIDTERM EXAM, WINTER 2019

Name	Student ID

- Read the instruction of each problem carefully.
- The exam has 6 pages. Circle your final results. Provided at the bottom of this cover page are some helpful formulae.
- To get full credit for a problem you must show your work. Answers not supported by valid arguments will get little or no credit.

Problem	Possible points	Earned points
1	10	
2	10	
3	20	
4	15	
5	30	
6	15	
Total	100	

Helpful trigonometric identities:

$$
\begin{aligned}
& \sin a \cos b=\frac{1}{2} \sin (a+b)+\frac{1}{2} \sin (a-b) \\
& \sin a \sin b=\frac{1}{2} \cos (a-b)-\frac{1}{2} \cos (a+b) \\
& \cos a \cos b=\frac{1}{2} \cos (a-b)+\frac{1}{2} \cos (a+b) \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2}, \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}
\end{aligned}
$$

Derivative of inverse trigonometric functions:

$$
(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}, \quad(\arctan x)^{\prime}=\frac{1}{1+x^{2}}
$$

[This page is intentionally left blank]

Problem 1. (10 pts) Express the following sum using Σ notation:

$$
1+3+5+7+\ldots+99
$$

$$
\sum_{k=1}^{50}(2 k-1) \text { or } \sum_{k=0}^{49}(2 k+1)
$$

There are many other possible answers.

Problem 2. (10 pts) Evaluate the following sum:

$$
\sum_{k=1}^{5}(2 k+1)
$$

$$
\begin{aligned}
& =(2(1)+1)+(2(2)+1)+(2(3)+1)+(2(4)+1)+(2(5)+1) \\
& =3+5+7+9+11 \\
& =35
\end{aligned}
$$

Problem 3. Consider the function $f(x)=\sqrt{x}$ on the interval [1, 2]. Suppose one wants to write the midpoint Riemann sum of f on this interval with $n=5$.
(a) (3 ts) Find the width of each subinterval.

$$
\frac{2-1}{5}=\frac{1}{5}=0.2
$$

(b) (6 pts) Find the grid-points (the x_{k} 's).

$$
\begin{aligned}
& x_{6}=1 \\
& x_{1}=1.2 \\
& x_{2}=1.4 \quad x_{5}=2 \\
& x_{3}=1.6 \\
& x_{4}=1.8
\end{aligned}
$$

(c) (6 pts) Find the sample points (the x_{k}^{*} 's).

$$
\begin{aligned}
& x_{0}^{*}=1.1 \\
& x_{1}^{*}=1.3 \quad x_{4}^{*}=1.9 \\
& x_{2}^{*}=1.5 \\
& x_{3}^{*}=1.7
\end{aligned}
$$

(d) (5 pts) Write the midpoint Riemann sum of f. The sum should not contain Σ sign nor the dots "..." It should contain only numbers. Do not evaluate the sum.

$$
\begin{aligned}
& f\left(2_{0}^{x}\right) 0.2+f\left(x_{1}^{\alpha}\right) 0.2+f\left(x_{2}^{\alpha}\right) 0.2+f\left(x_{3}^{\alpha}\right) 0.2+f\left(x_{3}^{\alpha}\right) 0.2 \\
& =\sqrt{1.1} 0.2+\sqrt{1.3} 0.2+\sqrt{1.5} 0.2+\sqrt{1.7} 0.2+\sqrt{1.9} 0.2
\end{aligned}
$$

Problem 4. Consider the curves $y=3-x^{2}$ and $y=x+1$.
(a) (3 pts) Graph these curves on the same graph.

(b) (6 pts) Find the points of intersection of these curves.

$$
\begin{aligned}
& 3-x^{2}=x+1 \Leftrightarrow x^{2}+x-2=0 \\
& \text { two roots: } x=1 \text { and } x=-2
\end{aligned}
$$

$$
\text { For } x=1: \quad y=3-(1)^{2}=2
$$

$$
\text { For } x=-2: \quad y=3-(-2)^{2}=-1
$$

Intercepts: $(1,2)$

$$
(-2,-1)
$$

(c) (6 pts) Shade the region enclosed by the curves. Then evaluate the area of this region.

$$
\begin{aligned}
\int_{-2}^{1}\left(\left(3-x^{2}\right)-(x+1)\right) d x & =\int_{-2}^{1}\left(2-x^{2}-x\right) d x \\
& =\left.\left(2 x-\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)\right|_{-2} ^{1} \\
& =\left(2-\frac{1}{3}-\frac{1}{2}\right)-\left(-4+\frac{8}{3}-2\right) \\
& \left.=\frac{5}{3}-\frac{1}{2}+6-\frac{8}{3}=-1-\frac{1}{2}+6=5-\frac{1}{2}=\frac{9}{2}\right)
\end{aligned}
$$

Problem 5. Evaluate the following definite integrals:
(a) (10 pts)

$$
\int_{1}^{2} \frac{x^{2}+1}{x^{3}+3 x} d x
$$

$$
\begin{aligned}
u & =x^{3}+3 x \\
d u & =\left(3 x^{2}+3\right) d x \\
& =3\left(x^{2}+1\right) d x \quad \begin{array}{l|l|l}
u \\
\frac{x^{2}+1}{x^{3}+3 x} & d x & =\frac{\frac{1}{3} d u}{u} \\
\int_{1}^{2} \cdots & =\int_{4}^{14} \frac{1}{3} \frac{1}{u} d u & \left.=\left.\frac{1}{3} \ln u\right|_{4} ^{14}=\frac{1}{3}(\ln 14-\ln 4)\right)
\end{array}, l
\end{aligned}
$$

(b) (10 pts)

$$
\int_{0}^{2} \frac{3}{4+x^{2}} d x
$$

$$
\begin{aligned}
& u=\frac{x}{2} \\
& d u=\frac{1}{2} d x \\
& \frac{3}{4+x^{2}} d x=\frac{3}{4+(2 u)^{2}} 2 d u=\frac{3}{4\left(1+u^{2}\right)} 2 d u=\frac{3}{2} \frac{1}{1+u^{2}} d u \\
& \int_{0}^{2} \ldots . .=\int_{0}^{1} \frac{3}{2} \frac{1}{1+u^{2}} d u=\left.\frac{3}{2} \arctan u\right|_{0} ^{1} \\
& =\frac{3}{2}(\underbrace{\arctan 1}_{\pi / 4}-\underbrace{\operatorname{ardan} 0}_{0})=\left(\frac{3 \pi}{8}\right.
\end{aligned}
$$

(c) $(10 \mathrm{pts})$

$$
\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x
$$

$$
\begin{aligned}
& u= \sin x \\
& d u=\cos x d x \\
& \sin ^{2} x \cos ^{3} x d x=\underbrace{\sin ^{2} x}_{u^{2}} \underbrace{\cos ^{2} x}_{1-u^{2}} \underbrace{\cos x d x}_{d u}=\begin{array}{c|c|c}
x & 0 & \frac{\pi / 2}{u} \\
\int_{0}^{2}\left(1-u^{2}\right) d u \\
\int_{0}^{\pi / 2} \ldots & =\int_{0}^{1} u^{2}\left(1-u^{2}\right) d u=\int_{0}^{1}\left(u^{2}-u^{4}\right) d u & =\left.\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)\right|_{0} ^{1} \\
& =\frac{1}{3}-\frac{1}{5}=\left(\frac{\frac{1}{15}}{15}\right)
\end{array}
\end{aligned}
$$

Problem 6. (15 pts) Evaluate the length of the following curve

$$
y=\ln x-\frac{x^{2}}{8} \text { on }[1,2]
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x}-\frac{x}{4} \\
f^{\prime}(x)^{2} & =\left(\frac{1}{x}-\frac{x}{4}\right)^{2}=\frac{1}{x^{2}}-\frac{1}{2}+\frac{x^{2}}{16} \\
1+f^{\prime}(x)^{2} & =\frac{1}{x^{2}}+\frac{1}{2}+\frac{x^{2}}{16}=\left(\frac{1}{x}+\frac{x}{4}\right)^{2} \\
\sqrt{1+f^{\prime}(2)^{2}} & =\frac{1}{x}+\frac{x}{4} \\
L=\int_{1}^{2}\left(\frac{1}{x}+\frac{x}{4}\right) d x=\left.\left(\ln x+\frac{x^{2}}{8}\right)\right|_{1} ^{2} & =\ln 2+\frac{2^{2}}{8}-\left(\ln 1+\frac{1^{2}}{8}\right) \\
& =\ln 2+\frac{3}{8}
\end{aligned}
$$

