Worksheet

3/15/2019

1. Evaluate the area of the region bounded by the curves $y=x, y=x^{2}-2, y=0$ in the third quadrant.
2. Evaluate the length of the arc

$$
y=\frac{2}{3} x^{3 / 2}-\frac{1}{2} x^{1 / 2}, \quad x \in[0,9]
$$

3. Check if the following integral converges or diverges. If it converges, evaluate it.

$$
\int_{1}^{\infty} \frac{d x}{x^{2}(x+1)}
$$

4. Solve the following initial value problem:

$$
\frac{d y}{d x}=2 y(y-3), \quad y(0)=1
$$

5. An initial deposit of $\$ 1500$ is put in a saving account. Suppose the interest is compounded continually at the rate of 0.1% per year.
(a) Find the balance in the account as a function of time.
(b) How long does it take for the balance to increase in value to $\$ 2500$?
6. A cup of hot water at $140^{\circ} \mathrm{F}$ is left in a room of temperature $72^{\circ} \mathrm{F}$. The heat constant is $k=0.1\left(\mathrm{~min}^{-1}\right)$.
(a) Use Newton's law of cooling to find the temperature of the water in the cup as a function of time (minutes).
(b) How long does it take for the temperature to be $90^{\circ} \mathrm{F}$?
7. A tank contains 1000 gallons of mixture of salt and water. The initial amount of salt is 10 lbs. People purify the mixture by pumping in fresh water at a rate of $5 \mathrm{gal} / \mathrm{min}$, while at the same time pumping the mixture out at a rate of $4 \mathrm{gal} / \mathrm{min}$. Find the amount of salt (lbs) in the tank as a function of time.
8. Use an appropriate method to evaluate the following integrals.
(a) $\int \frac{3 x}{\sqrt{x+4}} d x$ (Hint: use substitution.)
(b) $\int \sin ^{3} x \cos ^{3} x d x$ (Hint: use substitution.)
(c) $\int_{-2}^{1} \frac{3}{x^{2}+4 x+13} d x$ (Hint: complete the square in the denominator, then use substitution.)
(d) $\int_{0}^{1} \frac{t}{e^{2 t}} d t$ (Hint: use integration by part.)
