Homework 3

1. Solve the following systems of linear equations using Gauss elimination method. If a system has infinitely many solutions, write them in parametric vector form.
(a)

$$
\left\{\begin{array}{ccc}
6 x-2 z & = & 8 \\
x+2 y & = & 5 \\
-y+3 z & = & -5
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{c}
2 x-y+z=0 \\
x+2 y-2 z=0 \\
3 x+y-z=1
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{l}
x+2 y+3 z=14 \\
3 x+2 y+z=10 \\
3 x+y+2 z=11
\end{array}\right.
$$

2. (Problem 8, page 92 textbook) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear map associated with matrix

$$
A=\left[\begin{array}{lll}
1 & -3 & 1 \\
2 & -8 & 8
\end{array}\right]
$$

Solve the equation $f(x)=(-2,12)$. (That is, find all vectors $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ such that $f\left(x_{1}, x_{2}, x_{3}\right)=(-2,12)$.)
3. (Problem 9, page 92 textbook) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map associated with matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-3 & -8 \\
1 & 8
\end{array}\right]
$$

Solve the equation $f(x)=(-2,12,-20)$.
4. Find the reduced row echelon form (RREF) of the following matrices. Make sure to show each row operation step.
(a)

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 0
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 5 & -1 \\
-2 & -1 & -2
\end{array}\right]
$$

5. Check if each following matrix is invertible. If so, find the inverse matrix.
(a)

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 5 & -1 \\
-2 & -1 & -2
\end{array}\right]
$$

(d)
$\left[\begin{array}{ccc}2 & 2 & 3 \\ -1 & 0 & 1 \\ 0 & 2 & 5\end{array}\right]$
6. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map given as follows:

$$
f(x, y, z)=(x+y+z, 6 x+5 y+4 z, 13 x+10 y+8 z) .
$$

(a) Find the matrix A associated with f.
(b) Find A^{-1}.
(c) Find an explicit expression for f^{-1} (the inverse map of f).

