Homework 6

1. This exercise is an example of how find the lowest order of Taylor polynomial to compute $e^{2} \sin 2$ with error of at most 10^{-2}. Put

$$
f(x)=e^{\frac{x}{2}} \sin \left(\frac{x}{2}\right)
$$

(a) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Find the Taylor polynomials T_{0}, T_{1}, T_{2} of f about the base point 0 .
(c) From Part (a), verify that $\left|f^{\prime}(x)\right| \leq e^{x / 2}$ and $\left|f^{\prime \prime}(x)\right| \leq e^{x / 2}$.
(d) What does Lagrange's theorem say about the error term $R_{n}(4)=f(4)-T_{n}(4)$?
(e) It is know that (you don't have to verify) $\left|f^{(n)}(x)\right| \leq e^{x / 2}$ for any $x \in \mathbb{R}$. Find an upper bound in terms of n for the error term $R_{n}(4)$. (Hint: use $e^{2}<8$).
(f) With the upper bound found in Part (e), use your calculator to find n (by trying $n=$ $1,2,3, \ldots)$ such that $\left|R_{n}(4)\right|<10^{-2}$.
2. Consider the series

$$
1-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+\frac{1}{3^{4}}-\frac{1}{3^{5}}+\ldots
$$

(a) Express this series using Σ notation.
(b) Let S_{n} be the n 'th partial sum, which is the sum of the first n terms. Find a general formula of S_{n} in terms of n. Hint: write $(-1 / 3) S_{n}$, then subtract S_{n} from it.
(c) Find $\lim _{n \rightarrow \infty} S_{n}$.
(d) Does the series converge? If it does, what is the sum of the series?
3. Consider the series

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}+\ldots
$$

(a) Express this series using Σ notation.
(b) Verify that

$$
\sqrt{k+1}-\sqrt{k}=\frac{1}{\sqrt{k+1}+\sqrt{k}}
$$

(c) Based on the above formula, verify that for every $k \geq 1$

$$
\sqrt{k+1}-\sqrt{k}<\frac{1}{2 \sqrt{k}}
$$

(d) Let S_{n} be the n 'th partial sum, which is the sum of the first n terms. Verify that $S_{n}>2(\sqrt{n+1}-1)$.
(e) Find $\lim _{n \rightarrow \infty} S_{n}$.
(f) Does the series converge or diverge?

