Some review problems for Midterm

1. Compute the eigenvalues of the following matrices. To each eigenvalue, find the corresponding eigenvectors . Pick only the eigenvectors that are linearly independent.
(a)

$$
\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{cc}
-2 & 12 \\
-1 & 5
\end{array}\right]
$$

(d)
(b)

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

2. Determine whether the given vectors are linearly independent. If they are linearly dependent, find a nontrivial linear combination of the vectors that has sum 0 .
(a) $v_{1}=(0,0), v_{2}=(2,-1)$.
(b) $v_{1}=(1,2), v_{2}=(2,0), v_{3}=(3,1)$.
(c) $v_{1}=(1,3,-1), v_{2}=(3,7,-7), v_{3}=(1,2,-3)$.
(d) $v_{1}=(0,0,1,1), v_{2}=(1,1,0,0), v_{3}=(1,0,0,-1)$.
3. Determine whether the each of the following matrices is invertible. If it is, find the inverse matrix A^{-1}.
(a)

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right]
$$

(d)
(b) $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & 1 & 8 \\
1 & -2 & -7
\end{array}\right]
$$

4. Let A, B, C be 2 -by- 2 matrices such that $\operatorname{det} A=2$, $\operatorname{det} B=3$, $\operatorname{det} C=1$. Find the determinant of matrix $D=-A^{2} B^{-2} C^{-1}$.
5. Solve the following systems of linear equations using Gauss elimination method. If a system has infinitely many solutions, write them in parametric vector form.
(a)

$$
\left\{\begin{array}{l}
3 x+4 y=10 \\
2 x+3 y=7
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{rlc}
x+y+2 z & = & 4 \\
x-2 y+z & = & 0 \\
x-5 y & = & -4
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{ccc}
x+y+z & = & 6 \\
2 y+5 z & = & -4 \\
2 x+5 y-z & = & 27
\end{array}\right.
$$

(d)

$$
\left\{\begin{aligned}
x+2 y+6 z & =5 \\
-x+y-2 z & =3 \\
x-4 y-2 z & =1
\end{aligned}\right.
$$

6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map such that $f(-1,2)=(0,2,1)$ and $f(-2,3)=(-1,3,0)$. Find an explicit formula of f. That is, a formula of the form $f(x, y)=(a x+b y, c x+d y)$ where a, b, c, d are constants.
7. Determine whether the following maps are linear. Explain why or why not.
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(2 x_{1}, x_{1}+x_{2}\right)$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, f(x)=(x, \sin x)$.
8. Each of the following maps is a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}. Do the following:
(i) Write the matrix associated with it.
(ii) Give a geometric description of the map.
(a) $f(x, y)=(0, y)$
(b) $f(x, y)=(x,-y)$
(c) $f(x, y)=(2 x, 2 y)$,
(d) $f(x, y)=(y, x)$,
(e) $f(x, y)=(-y, x)$,
(f) $f(x, y)=(-3 y, 3 x)$
9. Is there any 2 -by- 2 matrix A with real (not complex) entries such that $A^{2}=-I_{2}$? If yes, give an example. If no, explain why.
