Name	Student ID

- Read the instruction of each problem carefully.
- The exam has 6 pages. Circle your final results.
- To get full credit for a problem you must show your work. Answers not supported by valid arguments will get little or no credit.

Problem	Possible points	Earned points
1	10	
2	15	
3	15	
4	15	
5	15	
6	15	
Total	85	

[This page is intentionally left blank]

Problem 1. (10 pts) Determine if the following map is linear. Explain why and why not.

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(x)=(2 x, 1-x)
$$

$$
\left.\begin{array}{l}
2 f(1)=2(2,0)=(4,0) \\
f(2)=(4,-1)
\end{array}\right\} \quad f(2) \neq 2 f(1)
$$

f is not linear because it is not scaling multiplicative.

Problem 2. Consider the linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
f(x, y)=(x+3 y, 2 x+4 y)
$$

(a) (5 pts) Find the matrix A associated with f.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]
$$

(b) (5 pts) Determine if A is invertible. If it is, find A^{-1}.

$$
\operatorname{det} A=1(4)-2(3)=-2 \neq 0
$$

A is invertible

$$
A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 3 / 2 \\
1 & -1 /
\end{array}\right]
$$

(c) (5 pts) Determine if f is invertible. If it is, find an explicit expression for f^{-1}. That is, a formula of the form $f^{-1}(x, y)=(a x+b y, c x+d y)$ where a, b, c, d are constants.

$$
\begin{gathered}
f^{-1}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=x^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
-2 & 3 / 2 \\
1 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 x+\frac{3}{2} y \\
x-\frac{y}{2}
\end{array}\right] \\
f^{-1}(x, y)=\left(-2 x+\frac{3}{2} y, x-\frac{1}{2} y\right)
\end{gathered}
$$

Problem 3. (15 pts) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map associated with matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & 1 & 8 \\
1 & -2 & -7
\end{array}\right]
$$

Solve the equation $f(x)=(1,3,-3)$. That is, find all vectors $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ such that $f\left(x_{1}, x_{2}, x_{3}\right)=(1,3,-3)$. If there are infinitely many solutions, write them in parametric vector form.

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & 1 & 8 \\
1 & -2 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-3
\end{array}\right]
$$

Augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
-2 & 1 & 8 & 3 \\
1 & -2 & -7 & -3
\end{array}\right] \xrightarrow[R_{3}=R_{3}-R_{1}]{R_{2}=R_{2}+2 R_{1}}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
0 & 5 & 10 & 5 \\
0 & -4 & -8 & -4
\end{array}\right]
$$

$$
\begin{array}{r}
R_{3}=R_{3}+4 R_{2}
\end{array} \begin{array}{lll|l}
R_{2}
\end{array}\left[\begin{array}{lll|l}
1 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { 凡 } \begin{array}{r}
x_{3}=t \quad \text { (free variable) }
\end{array}
$$

The system has infinitely many solutions.
From $2^{\text {nd }}$ row: $x_{2}+2 x_{3}=1$. Thus, $x_{2}=1-2 t$
From lit row: $\quad x_{1}+2 x_{2}+x_{3}=1$. Then $x_{1}=1-2(1-2 t)-t=-1+3 t$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1+3 t \\
1-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]
$$

Problem 4. (15 pts) Determine if the following vectors are linear dependent or independent:

$$
\begin{aligned}
& v_{1}=(2,1,0) \\
& v_{2}=(2,-1,2) \\
& v_{3}=(0,-1,1)
\end{aligned}
$$

If they are linearly dependent, find a nontrivial linear combination of the vectors that has sum 0 .

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
v_{1} & v_{2} & v_{3} & 0 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc|c}
2 & 2 & 0 & 0 \\
1 & -1 & -1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}=R_{2}-\frac{1}{2} R_{1}}\left[\begin{array}{lll|l}
2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0
\end{array}\right]} \\
\\
\xrightarrow[R_{2} \leftrightarrow R_{3}]{R_{1}=R_{1} / 2}
\end{gathered}\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Pick $\xi_{3}=2$.
From the $2^{\text {nd }}$ row: $2 c_{2}+c_{3}=0$. Then $c_{2}=-1$
From the $1^{\text {st }}$ row: $c_{1}+c_{2}=0$. Then $c_{1}=1$
v_{1}, v_{2}, v_{3} are linearly dependent, and

$$
v_{1}-v_{2}+2 v_{3}=0 .
$$

Problem 5. (15 pts) Is there any linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $f(3,2)=(-1,2,0)$ and $f(2,1)=(2,0,-2)$? If yes, write the matrix associated with f. If no, explain why.

$$
\begin{aligned}
& v_{1}=(3,2) \\
& v_{2}=(2,1)
\end{aligned}
$$

A matrix associated with f.

$$
\begin{aligned}
& \text { matrix because } \\
& \operatorname{det}=3(1)-2(2)=-1 \neq 0
\end{aligned}
$$

So yes, there is such a map f.

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
-1 & 2 \\
2 & 0 \\
0 & -2
\end{array}\right] \underbrace{\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]^{-1}}_{=\frac{1}{-1}\left[\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right]} \\
& =\left[\begin{array}{cc}
-1 & 2 \\
2 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right]=\left[\begin{array}{cc}
5 & -8 \\
-2 & 4 \\
-4 & 6
\end{array}\right]
\end{aligned}
$$

Problem 6. (15 pts) Consider the linear map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f(x, y)=(x+3 y, 2 x+6 y)
$$

Find the eigenvalues and eigenvectors of f. (That is, the eigenvalues and eigenvectors of the matrix associated with f.) Pick only the eigenvectors that are linearly independent.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \\
& A-\lambda I_{2}=\left[\begin{array}{cc}
1-\lambda & 3 \\
2 & 6-\lambda
\end{array}\right] \\
& \operatorname{det}\left(A-\lambda I_{2}\right)=(1-\lambda)(6-\lambda)-2(3)=\lambda^{2}-7 \lambda=\lambda(\lambda-7)
\end{aligned}
$$

Two roots: $\lambda=0$ and $\lambda=7$.
x with $\lambda=0$:

$$
\left.\begin{array}{l}
A-D I=A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \\
{[A \mid 0}
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 6 & 0
\end{array}\right] \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right], \begin{gathered}
x_{2}=t \\
x_{1}+3 x_{2}=0 \Rightarrow x_{1}=-3 t
\end{gathered}
$$

Eigen
$=7:$

* With $\lambda=7$:

$$
\begin{gathered}
{\left[A-7 I_{2} \mid 0\right]=\left[\begin{array}{cc|c}
-6 & 3 & 0 \\
2 & -1 & 0
\end{array}\right] \xrightarrow[R_{2}=R_{2}+R_{1}]{\xrightarrow{R_{1}}=\frac{1}{3} R_{1}}\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\\
-2 x_{1}+x_{2}=0 \\
\\
\Rightarrow x_{1}=t / 2
\end{gathered}
$$

Eigenvectors: $\left(\frac{t}{2}, t\right)=t\left(\frac{1}{2}, 1\right)$

$$
\left.v_{2}=\left(\frac{1}{2}, 1\right)\right)
$$

