
Project A
Due March 5, 2019

I Instruction.

The purpose of this project is to apply

• Matrix methods to balance chemical equations,

• Series methods to evaluate definite integrals,

• Matrix methods to model a population problem in ecology.

Section II and IV are only for practice. Please do not include them in your report. Section III (the
three problems) is what you write a report on. You are allowed to use any results/theorems/formulae
from the textbook if you need (although the materials already covered in lectures should be suffi-
cient for this project). If you use any result that is not covered in lectures, please cite it from the
textbook, for example page number/theorem number/etc.

Due to large amount of computation, you will need to use a mathematical software called
Matlab. You can install Matlab on your personal computer with OSU’s license by going to the
webpage https://is.oregonstate.edu/service/software/matlab and follow the instructions
therein. Section IV are some basic commands on Matlab. Please practice on those commands to
get acquainted with Matlab before proceeding to the project. The recommended order to work on
this project is:

Section IV → Practice 1 → Problem 1 → Practice 2 → Problem 2 → Practice 3 → Problem 3.

If you use Matlab for any part of the report, please write the (main) commands that you use.
You don’t need to write all commands. The report should be written coherently. You should
explain the methods/procedures that you use. Writing only Matlab commands without any expla-
nation is not sufficient. Answers that are not supported by valid arguments will receive little or no
credits. You are strongly encouraged to work with your group members.

II Practices.
Practice 1:
Consider a system of 3 equations and 3 unknowns:

x+ 2y = 5
y − 3z = 5
3x− z = 4

The matrix form of this system is AX = b, where

A =

 1 2 0
0 1 −3
3 0 −1

 , X =

 x
y
z

 , b =

 5
5
4

 .
To enter A in Matlab, we type:

>> A = [1 2 0;0 1 -3;3 0 -1]

To enter b, we type:

>> b = [5;5;4]
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The augmented matrix is obtained by attaching column b on the right hand side of the coefficient
matrix A:

>> aug = [A b]

We then perform row operations on the augmented matrix to bring it to reduced row echolon form
(RREF). Note that RREF is a special type of REF. Note that REF of a matrix is not unique, but
RREF is. In practice, RREF is usually more preferred. One can do so by hand or use a built-in
command of Matlab:

>> rref(aug)

which gives  1 0 0 1
0 1 0 2
0 0 1 −1


(The vertical bar does not appear in Matlab, but let’s imagine it is there.) From here we see that
the system has a unique solution x = 1, y = 2, z = −1.

Practice 2:
If function f : [a, b] → R has an antiderivative F , one can compute definite integral of f over the
interval [a, b] using the Fundamental Theorem of Calculus:∫ b

a
f(x)dx = F (b)− F (a).

In 1830s, Joseph Liouville showed that there are elementary functions (i.e. functions that are
constructed from the polynomials, trigonometric functions, inverse trigonometric functions, ex-
ponential functions, logarithm functions, and combinations of those using addition, subtraction,
multiplication and division) whose antiderivatives are non-elementary functions. To name a few:

sinx

x
, cos(x2), ex

2
, ee

x
,
√

1− x3, . . .

In fact, in 1960s Robert Risch developed an algorithm to check if a function has an antiderivative
that is an elementary function. With such a function, one needs a numerical method to approximate
its definite integral. Perhaps you have once used Riemann sum (left-point, right-point, midpoint,
trapezoid rule,. . . ) to approximate a definite integral. Taylor polynomial/series provides an alter-
nate numerical method: replace the function f by a Taylor polynomial, the antiderivative of which
is known. For example, consider ∫ 1

0
cos(x2)dx

Here f(x) = cos(x2). The 4th order Taylor polynomial of f(x) is

T4(x) = 1− x4

2
.

Thus, ∫ 1

0
cos(x2)dx ≈

∫ 1

0

(
1− x4

2

)
dx =

(
x− x5

10

) ∣∣∣∣1
0

= 0.9

Practice 3:
To compute the eigenvectors of a square matrix (or a linear map), we usually start with computing

2



the eigenvalues by solving the equation

det(A− λIn) = 0.

This is the problem of finding roots of a polynomial. The degree of the polynomial is equal to the
size of matrix A. If A has size greater than 4, we run into trouble. In fact, it was proven by Ruffini
and Abel around 1799–1825 that a general polynomial of degree 5 or higher cannot be solved by
radicals. The strategy is to avoid solving for all eigenvalues before finding the eigenvectors. There
exist many numerical method to do so. Let us consider a simple method called power iteration.
This method only produces the largest (in sense of absolute value) eigenvalue and a corresponding
eigenvector. Such an eigenvalue is called dominant eigenvalue. The direction of the corresponding
eigenvector is called a principal direction. This direction is important in many applications. The
power iteration method only works under certain conditions:

• The matrix has n distinct eigenvalues.

• The absolute values of the eigenvalues are also distinct.

If you pick randomly n2 real numbers to form an n× n matrix, almost surely the resulting matrix
will satisfy the above conditions. Therefore, the conditions are almost always satisfied. Let us
consider an example:

A =

[
1 3
3 1

]
To find a principal direction of A, we pick some direction to start with, say v0 = (2, 3). Then
update the direction by the following procedure:

• The updated direction is Av0. The normalized direction is vector v1 = Av0/‖Av0‖ where
‖Av0‖ is the magnitude of vector Av0.

• The updated direction is Av1. The normalized direction is vector v2 = Av1/‖Av1‖.

• (continue this procedure)

Drawing a picture for each step will help you visualize this procedure. The more steps we make,
the closer the resulting direction (vm after m steps) is to the principal direction (an eigenvector
corresponding to the largest eigenvalue). The reason why we normalize the direction is to prevent
the magnitude of the resulting vector from growing too large. Theory guarantees that after many
steps the resulting direction seems to settle on some direction v. This vector v is a fixed point of
the loop, i.e.

v =
Av

‖Av‖
If we denote λ = ‖Av‖ then Av = λv. Then λ is an eigenvalue (it is in fact the dominant eigenvalue),
and v is a corresponding eigenvector. There is a subtle issue worth noting: for the procedure to
converge, the dominant eigenvalue must be positive. For simplicity, we will only consider examples
when this is the case. The recursive procedure above can be programed in Matlab as a function:

function v = powerIter(A,v0,m)

v = v0

for i = 1:m

v = A*v/norm(A*v)

end

The inputs are: matrix A, the initial direction v0 (which is a column vector), and the number of
steps m. The output is the direction at the m’th step. (The resulting directions at previous steps
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are also printed out.) Copy the code segment above to a new script file (.m) and save under the
name powerIter.m (Make sure that the file’s name is the same as the function’s name, which is
“powerIter” in this case.) Now apply this function for m = 30 for example.

>> v = powerIter(A,v0,30)

Since what step do you notice that the resulting direction starts to converge? The limiting direction
seems to be v = (0.7071, 0.7071). This is an eigenvector corresponding to the dominant eigenvalue:

>> lambda = norm(A*v)

which gives λ = 4. “Norm” is a built-in command in Matlab to compute the magnitude of a
vector. Now try using a different initial direction, say v0 = (50, 39). Will the limiting direction
and dominant eigenvalue change?

Another way to look at the above procedure is that vm, the resulting direction at the m’th step,
is given by

vm =
Amv0
‖Amv0‖

.

You can verify by hand this formula for small values of m without difficulty. This is why the
method has the name “power iteration”. If vm converges to v as m → ∞, then Amv0 tends to be
aligned with (i.e. parallel to) v, the principal direction of A, for large m regardless of the choice of v0.

III Problems.

1. Balance the following chemical equation

KMnO4 + HCl→ KCl + MnCl2 + H2O + Cl2

In other words, find intergers x1, x2,. . . , x6 such that

x1KMnO4 + x2HCl = x3KCl + x4MnCl2 + x5H2O + x6Cl2

2. Use the 4th order Taylor polynomial to approximate the definite integral:∫ 1

0
e−

x2

2 dx

The integrand plays an important role in Probability Theory, called the density function of
the normal distribution (modulo a constant factor).

3. Consider an ecosystem consisting of lions, hyenas and antelopes. Each species is counted at
the end of each year. To give an approximate mathematical model for the system, we adopt
the convention that the population (i.e. the number of individuals) is not necessarily a whole
number. Denote by ln, hn, an the population of lions, hyenas and antelopes respectively
counted at the end of year n. Over many years, ecologists observe a pattern:

• The population of lions is equal to 101% of their population of the previous year (due to
minimal reproduction rate), minus 1% of the hyena population of the previous year (due
to food competition and fightings), plus 3% of the antelope population of the previous
year (due to food supply).

• The population of hyenas is equal to 102% of their population of the previous year, minus
1% of the lion population of the previous year, plus 5% of the antelope population of
the previous year.
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• The population of antelopes is equal to 140% of their population of the previous year,
minus 10% of the lion population of the previous year, minus 10% of the hyena population
of the previous year.

(a) Express ln+1 as a linear combination of ln, hn, an. Similar question for hn+1 and an+1.

(b) Let vn be the column vector whose entries are ln, hn, an. Express the relation between
vn+1 and vn in matrix form.

(c) Suppose the initial populations (n = 0) are 7 lions, 15 hyenas and 100 antelopes. Deter-
mine the population of each species at the end of the sixth year.

(d) The ratio of lion : hyena : antelope at year n is defined as

ln
sn

:
hn
sn

:
an
sn

where sn = ln + hn + an. For example, the initial ratio of the three species is

7 : 15 : 100 =
7

122
:

15

122
:

100

122
≈ 5.74% : 12.30% : 81.96%

Determine the ratio of lion : hyena : antelope at an ecosystem equilibrium (i.e. the
limiting ratio over the years). Does it change when you vary the initial populations l0,
h0, a0?

IV Supplementary Material.

MATLAB is a common and powerful tool in science and engineering. The following link contains in-
struction on how to download and install MATLAB on your computer https://is.oregonstate.
edu/service/software/matlab. Let us start with some simple commands.

1. Start Matlab

2. Enter the following commands one by one

1+2

x=1+2

x

x;

y=x^2+2*x+1/x;

y

Notice the use of semicolon.

3. To enter a row vector, simply type e.g.

A = [1 2 -1 3]

or

A = [1,2,-1,3]

To enter a column vector, use semicolon instead of space or comma

B = [1;2;-1;3]
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Now try

A(1)

B(3)

You can see that the starting index of entries is 1 (not 0).

4. Try the following commands

C = [1 2 3;4 5 6;7 8 9;10 11 12]

size(C)

transpose(C)

C(1,:)

C(:,2)

C(2,:) = C(2,:) - 4*C(1,:)

Notice what each command does.

5. Try the following commands

x = 3:15

y = 3:2:15

z = 15:-3:3

length(y)

size(x)

Notice what each command does.

6. The following commands create special matrices.

ones(3)

zeros(2,5)

eye(4)

eye(2,4)

eye(4,2)

7. Now try

x

y

clear x y

x

y

Notice what the command “clear” does. To erase the command window, type

clc
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